Новости    Библиотека    Энциклопедия    Биографии    Карта сайта    Ссылки    О проекте




предыдущая главасодержаниеследующая глава

§ 6. Показательная (экспоненциальная) функция и логарифм

Концепции анализа предоставляют возможность построить гораздо более полную -теорию логарифма и показательной функции, чем это делает та элементарная процедура, которая лежит в основе обычного преподавания в школе. Там обычно отправляются от целых степеней аn положительного числа а, а затем определяют корень получая, таким образом, значения аr при любом рациональном показателе Затем значение степени ах при иррациональном х определяется так, что ах должна быть непрерывной функцией от x,- деликатный вопрос, обыкновенно опускаемый в элементарном изложении. Наконец, логарифмом числа у при основании а называется функция, обратная по отношению к показательной функции y = ах.

В последующем изложении теории этих функций, построенном на основах анализа, ход мыслей противоположный. Мы начнем с логарифма, а затем придем к показательной функции.

предыдущая главасодержаниеследующая глава




ИНТЕРЕСНО:

Многомерный математический мир… в вашей голове

В школах Великобритании введут китайские учебники математики

Найдено самое длинное простое число Мерсенна, состоящее из 22 миллионов цифр

Как математик помог биологам совершить важное открытие

Математические модели помогут хирургам

Почему в математике чаще преуспевают юноши

Физики-практики откровенно не любят математику

В индийской рукописи нашли первое в истории упоминание ноля

Вавилонская глиняная табличка оказалась древнейшей «тригонометрической таблицей» в мире

Ученые рассказали о важной роли игр с пальцами в обучении детей математике
Пользовательского поиска

© Злыгостев Алексей Сергеевич, статьи, подборка материалов, оформление, разработка ПО 2001-2017
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'MathemLib.ru: Математическая библиотека'
Рейтинг@Mail.ru