![]() |
3. Экстремальные проблемы элементарного содержанияВ задачах элементарного содержания бывает достаточно внимательно проанализировать условия, чтобы уяснить, как обстоит дело с существованием решения. В главе VI, § 5, было исследовано общее понятие компактного множества и было установлено, что непрерывная функция, заданная на некотором множестве элементов, для каких-то элементов множества непременно достигает своих экстремальных значений, если данное множество обладает свойством компактности. В любой из вышеприведенных элементарных проблем сравниваемые между собой числовые элементы могли быть рассматриваемы как значения функции одной или нескольких переменных в области, которая или была компактным множеством, или - без существенного видоизменения проблемы - могла быть сделана таковым. В таких случаях существование максимума или минимума не подлежало сомнению. Остановимся, в качестве примера, на проблеме Штейнера. Рассматриваемая в ней величина есть сумма трех расстояний, и эта последняя зависит от положения точки непрерывно. Хотя область, в которой может двигаться точка, есть вся плоскость, мы можем без ограничения общности провести окружность большого радиуса (включающую весь чертеж) и подчинить точку условию находиться внутри этой окружности или на ней самой. В самом деле, если движущаяся точка будет находиться достаточно далеко от вершин треугольника, сумма трех расстояний от сторон наверное превысит АВ + АС, а последняя величина принадлежит к числу подлежащих сравнению значений нашей функции. Таким образом, если существует минимум для "ограниченной" проблемы (когда точка подчинена дополнительному ограничению), то существует минимум и для неограниченной проблемы. С другой стороны, нетрудно удостовериться, что множество, состоящее из точек внутри круга или на его границе, компактно. Итак, существование минимума в случае проблемы Штейнера доказано. Насколько существенно свойство компактности области, в которой изменяется независимое переменное, обнаруживает следующий пример. Если заданы две замкнутые кривые С1 и С2, то всегда можно найти на С1 и С2 соответственно такие две точки Р1 и Р2, что расстояние между ними минимально, и две такие точки Q1 и Q2, что расстояние между ними максимально. Действительно, расстояние между точкой А1 на С1 и точкой А2 на С2 есть непрерывная функция, заданная на компактном множестве, элементы которого - пары точек А1, A2. Напротив, если данные кривые, не будучи замкнутыми, уходят в бесконечность, проблема может и не иметь решения. На рис. 224 изображены две такие кривые, что ни наименьшее, ни наибольшее расстояния между соответственно принадлежащими им точками не достигаются; при этом нижняя граница расстояний равна нулю, а верхняя граница бесконечна. В иных случаях существует минимум, но не существует максимума. Так, в случае двух ветвей гиперболы (рис. 17, стр. 103) минимальное расстояние реализуется для вершин A и A', тогда как нельзя указать пары точек, между которыми расстояние было бы максимальным. ![]() Рис. 224. Кривые, между которыми нет ни наименьшего, ни наибольшего расстояния Нетрудно понять, чем обусловливается различие между двумя предыдущими примерами; для этого достаточно искусственно ограничить область изменения переменных. Возьмем произвольное положительное число R и подчиним абсциссы точек ограничению |x|≤R. Тогда для обеих проблем будет существовать и минимум, и максимум. Но в первом примере и минимум, и максимум достигаются на границе области, каково бы ни было R, и при неограниченном возрастании R соответствующие точки удаляются в бесконечность. Напротив, во втором примере минимальное расстояние достигается внутри области, и точки, его реализующие, остаются неподвижными, как бы ни возрастало R. |
![]()
|
|||
![]() |
|||||
© MATHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить ссылку на страницу источник: http://mathemlib.ru/ 'Математическая библиотека' |