Новости    Библиотека    Энциклопедия    Биографии    Карта сайта    Ссылки    О проекте




предыдущая главасодержаниеследующая глава

Глава VII. Максимумы и минимумы

Введение

Отрезок прямой линии определяет кратчайший путь между двумя его конечными точками. Дуга большого круга представляет собой кратчайшую кривую, которой можно соединить две точки на сфере. Среди всех замкнутых плоских кривых одной и той же длины наибольшая площадь охватывается окружностью, а среди всех замкнутых поверхностей одной и той же площади наибольший объем охватывается сферой.

Максимальные и минимальные свойства подобного рода были известны еще греческим математикам, хотя и не всегда со строгими их доказательствами. Одно из самых замечательных относящихся сюда открытий приписывается Герону, александрийскому ученому I столетия нашей эры. Издавна было известно, что световой луч, выходящий из точки Р и встречающийся с плоским зеркалом L, отражается в направлении некоторой точки Q таким образом, что PR и QR образуют одинаковые углы с зеркалом. По преданию, Герон установил, что если R' - любая точка зеркала, отличная от R, то сумма отрезков PR' + R'Q больше, чем PR + RQ. Эта теорема (которую мы скоро докажем) характеризует истинный путь светового луча PR Q между Р и Q как кратчайший путь от Р к Q с заходом на зеркало L - открытие, которое можно рассматривать как зародыш теории геометрической оптики.

Нет ничего удивительного в том, что математики живейшим образом интересуются подобного рода вопросами. В повседневной жизни постоянно возникают проблемы наибольшего и наименьшего, наилучшего и наихудшего. Именно в такой форме могут быть поставлены многие задачи, имеющие практическое значение. Например, каковы должны быть очертания судна, для того чтобы оно испытывало при движении в воде наименьшее сопротивление? Каково должно быть соотношение размеров цилиндрического резервуара, чтобы при заданном расходе материала объем был наибольшим?

Возникнув в XVII столетии, общая теория экстремальных, т. е. максимальных и минимальных, значений величин выдвинула обширный ряд принципов науки, служащих целям обобщения и систематизации. Первые шаги, сделанные Ферма в области дифференциального исчисления, были ускорены стремлением найти общие методы для изучения вопросов о максимумах и минимумах. В последующем столетии эти методы были значительно обогащены с изобретением вариационного исчисления. Становилось все яснее и яснее, что физические законы природы в высшей степени удачно .формулируются в терминах принципа минимальности, обеспечивающего естественный подход к более или менее полному решению частных проблем. Одним из самых замечательных достижений современной математики является теория стационарных значений, дающая такого рода расширение понятия максимума и минимума, которое базируется одновременно на анализе и на топологии.

Мы будем здесь рассматривать весь вопрос в целом с совершенно элементарной точки зрения.

предыдущая главасодержаниеследующая глава




ИНТЕРЕСНО:

Зачем математики ищут простые числа с миллионами знаков?

Задача построения новых оснований математики - унивалентные основания

Многомерный математический мир… в вашей голове

В школах Великобритании введут китайские учебники математики

Найдено самое длинное простое число Мерсенна, состоящее из 22 миллионов цифр

Как математик помог биологам совершить важное открытие

Математические модели помогут хирургам

Почему в математике чаще преуспевают юноши

Физики-практики откровенно не любят математику

В индийской рукописи нашли первое в истории упоминание ноля

Вавилонская глиняная табличка оказалась древнейшей «тригонометрической таблицей» в мире

Ученые рассказали о важной роли игр с пальцами в обучении детей математике
Пользовательского поиска

© Злыгостев Алексей Сергеевич, статьи, подборка материалов, оформление, разработка ПО 2001-2018
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'MathemLib.ru: Математическая библиотека'
Рейтинг@Mail.ru