Новости    Библиотека    Энциклопедия    Биографии    Карта сайта    Ссылки    О проекте




предыдущая главасодержаниеследующая глава

2. Применение к полному четырехстороннику

В качестве интересного применения инвариантности двойного отношения мы докажем одну простую, но важную теорему проективной геометрии. Речь идет о полном четырехстороннике - фигуре, образованной произвольными четырьмя прямыми, из которых никакие три не являются конкуррентными, и шестью точками их пересечения. На рис. 81 названные четыре прямые суть AE, BE, ВI, AF. Прямые АВ, EG и IF являются диагоналями четырехсторонника. Рассмотрим одну из диагоналей, например AB, и отметим на ней точки С и D, где она пересекается с двумя другими диагоналями. Тогда теорема утверждает существование равенства (ABCD) = -1; словами это выражается так: точки пересечения одной диагонали с двумя другими делят отрезок между вершинами четырехсторонника гармонически. Для доказательства достаточно обратить внимание на то, что

х = (ABCD) = (IFHD) (проектируем из Е), (IFHD) = (BACD) (проектируем из G).
Рис. 81. Полный четырехсторонник
Рис. 81. Полный четырехсторонник

Как нам известно,


таким образом, х2 = 1, х = ± 1. Но так как С, D разделяют Л, В,

то двойное отношение х отрицательно и потому оно должно быть равно именно -1, что мы и хотели доказать.

Полученное замечательное свойство полного четырехсторонника дает нам возможность с помощью одной лишь линейки построить точку, гармонически сопряженную с точкой С относительно пары А, В (если А, В, С коллинеарны). Нужно только, выбрав произвольную точку Е вне данной прямой, провести прямые ЕА, ЕВ, ЕС; затем, взяв произвольно точку G на ЕС, провести прямые AD и BD, пересекающие ЕВ и ЕА, скажем, в точках F и I; провести, наконец, прямую IF, которая и пересечет исходную прямую в искомой точке D.

Задача. На плоскости задан отрезок А В и область R (рис. 82). Желательно продолжить прямую АВ вправо от R. Как это можно сделать с помощью одной линейки и при условии, чтобы в процессе построения не покрывать линейкой никакой части области R? (Указание. Выберите на отрезке АВ две произвольные точки С и С', затем постройте сопряженные с ними гармонические D и D' относительно пары точек А, В; при построении воспользуйтесь четыре раза теоремой о полном четырехстороннике.)

Рис. 82. Проведение прямой через препятствие
Рис. 82. Проведение прямой через препятствие

предыдущая главасодержаниеследующая глава




ИНТЕРЕСНО:

Многомерный математический мир… в вашей голове

В школах Великобритании введут китайские учебники математики

Найдено самое длинное простое число Мерсенна, состоящее из 22 миллионов цифр

Как математик помог биологам совершить важное открытие

Математические модели помогут хирургам

Почему в математике чаще преуспевают юноши

Физики-практики откровенно не любят математику

В индийской рукописи нашли первое в истории упоминание ноля

Вавилонская глиняная табличка оказалась древнейшей «тригонометрической таблицей» в мире

Ученые рассказали о важной роли игр с пальцами в обучении детей математике
Пользовательского поиска

© Злыгостев Алексей Сергеевич, статьи, подборка материалов, оформление, разработка ПО 2001-2017
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'MathemLib.ru: Математическая библиотека'
Рейтинг@Mail.ru