![]() |
Построение меры Лебега10.4. Определение. Пусть Rp обозначает р-мерное евклидово пространство. Прямоугольником в Rp мы называем множество всех точек x = (x1, ..., хр), таких, что (10) ai≤xi≤bi (i = 1, ..., p),
или же множество точек, определяемое неравенствами (10), в которых некоторые (или все) знаки ≤ заменены на <;. Возможность равенства ai = bi при каком-нибудь значении i не исключается; в частности, пустое множество - тоже прямоугольник*. * (Однако возможность неравенства аi&362;bi - следует исключить заранее, так как в противном случае число m(∅) (см. ниже) не будет определено однозначно.- Прим. перев.) Если A - объединение конечного числа прямоугольников, то говорят, что A - элементарное множество. Пусть I - прямоугольник; положим, по определению, ![]() вне зависимости от того, включается или нет знак равенства в неравенства (10). Если А = I1∪...∪In и эти прямоугольники попарно не пересекаются, то мы полагаем (11) m(A) = m(I1) + ... + m(In).
Обозначим буквой Теперь следует убедиться в том, что (12) ![]() (13) Если А∈
![]() (14) Если A∈
![]() (15) Функция m аддитивна на
![]() Заметим, что если р = 1, 2, 3, то m - это соответственно длина, площадь и объем.
10.5. Определение. Неотрицательная аддитивная функция множества φ, определенная на (16) φ(G) - ε ≤φ(A) ≤φ(F) + ε
10.6.Примеры.(а) Функция множества m регулярна. Если А - прямоугольник, то требование определения 10.5 выполняется тривиальным образом. Общий случай следует из (13). (b) Положим Rр = R1, и пусть α - монотонно возрастающая функция, определенная на R1. Положим
μ([a, b]) = α(b +) - α(a -),
μ([a, b)) = α(b -) - α(a -),
μ((a, b]) = α(b +) - α(a +),
μ((a, b)) = α(b -) - α(a +).
Здесь [а, b) - множество всех чисел х, таких, что a≤x<b, и т. д. Эти множества следует различать из-за возможных разрывов функции α. Если μ определить на элементарных множествах, как в (11), то функция μ оказывается регулярной на
Наша следующая цель состоит в доказательстве того, что каждая функция множества, регулярная на
10.7.Определение. Пусть функция μ аддитивна, регулярна, неотрицательна и конечна на ![]() Положим, по определению, (17) ![]() где нижняя грань берется по всем счетным покрытиям множества Е открытыми элементарными множествами. Число μ* (Е) называется внешней мерой множества Е, соответствующей функции μ. Ясно, что μ*(Е)≥0 при всех Е и что (18) μ*(E1)≤μ*(E2),
если Е1⊂Е2.
10.8.Теорема. (а) Для любого А∈
(b) Если (19) ![]()
Отметим, что (а) означает, что функция μ* - продолжение функции μ с кольца
Доказательство. Пусть А∈ Из регулярности меры μ следует, что множество А содержится в некотором открытом элементарном множестве G, таком, что μ(G)≤μ(A) + ε. Поскольку μ*(A)≤μ(G) и поскольку число ε произвольно, то (20) μ*(A)≤μ(A).
По определению μ* существует такая последовательность {Аn} открытых элементарных множеств, объединение которых содержит множество A, что ![]() Регулярность функции μ показывает, что множество A содержит элементарное замкнутое множество F, такое, что μ(F)≥μ(A) - ε, а так как множество F компактно, то F⊂A1∪...∪AN
при некотором N. Значит, ![]() Сопоставляя это неравенство с неравенством (20), получаем утверждение (а). Пусть теперь Е = ∪ Еn, и пусть μ* (Еn)<+∞ при всех n. Данному числу ε>0 отвечают покрытия {Ank), k = 1, 2, 3, ..., множеств Еn открытыми элементарными множествами, такие, что (21) ![]() Тогда ![]() откуда следует (19). Если же μ* (En) = +∞ при некотором n, то неравенство (19), разумеется, тривиально. 10.9.Определение. Для любых множеств A⊂Rp, B⊂Rp положим (22) S(A, B) = (A - B)∪(B - A),
(23) d(A, В) = μ* (S (А, В)).
Будем писать Аn→A, если ![]()
Если существует такая последовательность {Аn} элементарных множеств, что Аn→A, то мы будем говорить, что множество А конечно μ-измеримо, и будем писать А∈ Множество S (A, В) - это так называемая "симметрическая разность" множеств A и B. Мы увидим, что d (A, В) обладает основными свойствами расстояния. Следующая теорема позволит нам получить нужное распространение функции μ.
10.10.Теорема. Множество Прежде чем обратиться к доказательству этой теоремы, мы изучим некоторые свойства множества S (A, В) и числа d (A, В). Имеем: (24) S (A, В) = S (В, A), S (A, A) = ∅,
(25) S (A, B)⊂ S (A, С)∪ S (С, B),
(26) ![]() Утверждение (24) очевидно, а (25) следует из того, что (А - В)⊂(A - С)∪(С - B), (B - A)∪(С - A)⊂(В - С).
Первая из формул (26) следует из того, что (A1∪A2) - (B1∪B2)∪(A1 - В1)⊂(A2 - В2).
Наконец, обозначая через Ес дополнение множества Е, получаем S(A1∩A2, B1∩B2) = S(A1c∪A2c, B1c∪B2c)⊂S(A1c, B1c)∪S(A2c, B2c) = S(A1 B1)∪S (A2, B2),
и последняя из формул (26) получится, если заметить, что A1 - A2 = A1∩A2c.
Согласно (23), (19) и (18), из этих свойств множества S (A, B) следует, что (27) d(A, B) = d(B, A), d(A, A) = 0,
(28) d(A, B)≤d(A, C) + d(C, В),
(29) ![]() Соотношения (27) и (28) показывают, что d(A, В) удовлетворяет требованиям определения 2.17, за исключением того, что из d(A, B) = 0 не следует А = В. Например, если μ = m, множество A счетно, а B пусто, то d(A, B) = m*(A) = 0.
Чтобы убедиться в этом, покроем n-ю точку множества A прямоугольником In, таким, что ![]() Но если мы будем считать два множества A и В эквивалентными при условии d(A, B) = 0,
то все подмножества пространства Rp разобьются на классы эквивалентности, и d(A, В) превращает множество всех этих классов эквивалентности в метрическое пространство. Тогда
* (Точнее было бы здесь говорить не о Эта интерпретация несущественна для доказательства, но она объясняет идею, лежащую в его основе. Нам потребуется еще одно свойство числа d(A, В), а именно (30) ![]() если по крайней мере одно из чисел μ*(A), μ*(B) конечно. Действительно, пусть 0≤μ*(B)≤μ*(A). Тогда, как показывает неравенство (28), d(A, ∅)≤d(A, B) + d(B, ∅)
т. е. μ*(A)≤d(A, B) + μ*(B).
Но так как μ*(В) конечно, то μ*(A) - μ*(B)≤d(A, B).
Доказательство теоремы 10.10. Пусть А∈ (31) Аn∪Bn→A∪B,
(32) Аn∩Bn→A∩B,
(33) Аn-Вn→А-В,
(34) μ*(An)→μ*(A),
и μ*(A)<+∞, так как d(An, A)→0. Согласно (31) и (33), μ(An) + μ(Вn) = μ(An∪Bn) + μ(Аn∩Bn).
Полагая n→∞, получаем из (34) и теоремы 10.8 (a) μ(A) + μ(В) = μ(A∪B) + μ(А∩B).
Если А∩B = ∅, то μ* (А∩B) = 0. Следовательно, функция μ* аддитивна на
Пусть теперь A∈ Аn = (А'1∪...∪Аn)-(А'1∪...∪А'n-1) (n = 2, 3, 4, ...).
Тогда (35) ![]() требуемое представление. Согласно (19), (36) ![]()
С другой стороны, A⊃А1∪...∪An, и, в силу аддитивности функции μ* на (37) μ*(A)≥μ*(А1∪...∪Аn) = μ*(A1)+...+μ*(А).
Из (36) и (37) следует, что (38) ![]() Допустим, что число μ*(А) конечно. Положим Вn = А1∪...∪Аn. Тогда, как показывает (38), ![]()
при n→^#8734;. Значит Вn→А, а так как Вn∈
Таким образом, мы показали, что A∈
Теперь уже ясно, что функция μ* счетно-аддитивна на Действительно, если ![]()
где {Аn} - последовательность непересекающихся множеств, принадлежащих
Наконец, мы должны показать, что
Пусть A∈ ![]()
где Аn, Вn∈ ![]()
показывает, что Аn∩B∈ ![]()
то Аn∩B∈
Теперь мы заменим μ*(А) на μ(A), если A∈
10.11. Замечания.(а) Если множество А открыто, то А∈
(b) Если А∈ F⊂A⊂G,
F замкнуто, G открыто и (39) μ(G - A)<ε, μ(A - F)<ε.
Первое неравенство выполняется потому, что внешняя мера была определена с помощью покрытий открытыми элементарными множествами. Второе неравенство получится, если перейти к дополнениям.
(c) Мы говорим, что Е - борелевское множество, если Е может быть получено с помощью счетного множества операций, исходя из открытых множеств, причем каждая операция - это либо взятие объединения, либо взятие пересечения, либо переход к дополнению. Множество
(d) Если А∈ (40) μ(G - A) = μ(A - F) = 0.
Это следует из (b), если взять ε = 1/n и положить n→∞. Поскольку A = F∪(A - F), мы видим, что каждое А∈ Борелевские множества μ-измеримы при каждом μ. Но множества меры нуль (т. е. множества Е, для которых μ*(Е) = 0) могут быть различными для различных μ. (e) Какова бы ни была функция μ, множества меры нуль образуют а-кольцо. (f) В случае меры Лебега всякое счетное множество имеет меру нуль. Но существуют и несчетные (и даже совершенные) множества меры нуль. Примером может служить множество Кантора: используя обозначения из п. 2.44, легко показать, что ![]() (n = 1, 2, 3, ...), а так как Р = ∩ Еn, то Р⊂En при любом n, так что m(Р) = 0.
10.12. Определение. Пусть X - множество, не обязательно являющееся подмножеством евклидова пространства или вообще какого-нибудь метрического пространства; X называется пространством с мерой, если существует σ-кольцо
Если, кроме того, Х∈
Например, мы можем взять в качестве X пространство Rp, в качестве
Или в качестве X можно взять множество всех положительных целых чисел, в качестве Другой пример дает теория вероятностей, в которой события можно рассматривать как множества, а вероятность наступления события - это аддитивная (или счетно-аддитивная) функция множества. В следующих разделах мы всегда будем иметь дело с измеримыми пространствами. Следует подчеркнуть, что теория интеграла, к которой мы вскоре перейдем, ни в каком отношении не стала бы проще, если бы мы пожертвовали той степенью общности, которой мы сейчас достигли, и ограничились, скажем, мерой Лебега на промежутке вещественной прямой. На самом деле основные черты теории с гораздо большей ясностью проявляются именно в общей ситуации, когда хорошо видно, что все зависит только от счетной аддитивности меры μ, определенной на некотором σ-кольце. Нам будет удобно ввести обозначение (41) ![]() для множества всех элементов х, обладающих свойством Р. |
![]()
|
|||
![]() |
|||||
© MATHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить ссылку на страницу источник: http://mathemlib.ru/ 'Математическая библиотека' |