НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    БИОГРАФИИ    КАРТА САЙТА    ССЫЛКИ    О ПРОЕКТЕ  

предыдущая главасодержаниеследующая глава

8. Математический строй музыки

Настоящая наука и настоящая музыка требуют однородного мыслительного процесса.

А. Эйнштейн

В главе 6 мы получили пифагоров строй, т. е. математическое выражение интервальных коэффициентов, лидийской гаммы (6.14), или, в современной терминологии, пифагоров строй натурального мажора:

(8.1)

Здесь цифры внизу обозначают интервальные коэффициенты соседних ступеней гаммы; напомним, что 9/8 есть тон, а 256/243 - полутон. Мы обнаружили также, что основные консонансные интервалы в пределах октавы - квинта и кварта - являются соответственно средним арифметическим и средним гармоническим частот основного тона и октавы. Кроме того, октава, квинта, кварта и тон образуют геометрическую пропорцию:

октава/квинта = кварта/тон.

Таким образом, музыкальная гамма разделена на пропорциональные части; она буквально пронизана пропорциями, а пропорциональность, как мы знаем, является одним из объективных критериев красоты. Однако на этом математика музыкальной гаммы не кончается, а, скорее, только начинается.

Прежде всего из (8.1) видно, что расстояния между соседними ступенями пифагорова строя неодинаковы. Поэтому, во-первых, от ноты до можно было играть только в лидийском ладу, а чтобы сыграть от этой ноты, скажем, в дорийском ладу, необходимо было перестраивать почти все струны лиры. Во-вторых, от ноты ре получался уже не лидийский, а фригийский лад и, вообще, от каждой новой ноты начинался новый лад (не случайно в таблице 1 на с. 107 имеется семь ладов - по одному на каждую из семи нот октавы). Поэтому, чтобы сыграть мелодию в лидийском ладу от другой ноты (чего, безусловно, требовали ограниченные возможности человеческого голоса: один поет выше, другой - ниже), лиру также следовало перестраивать. (Конечно, если всю жизнь играть в одном ладу и одной тональности, то семи нот в октаве будет вполне достаточно. До сих пор прекрасно обходятся семью звуками некоторые гармошки и другие народные инструменты.)

Итак, для того, чтобы иметь возможность переходить из лада в лад и из тональности в тональность, строй должен быть равномерным, т. е. иметь одинаковые высотные расстояния (интервальные коэффициенты) между звуками. Казалось бы, что проще: нужно разделить каждый тон-интервал пополам на два полутона, т. е. получить еще пять дополнительных звуков, и шкала пифагорова строя станет равномерной. Но вот тут-то и таилась основная трудность.

Дело в том, что половина тона в точности не равна полутону (256/243≈1,0545) (см. с. 105). Поэтому если в качестве единого масштаба строя взять полутон т е заменить на него имеющиеся в (8.1) два полутона 256/243, то эти 12 новых полутонов приведут нас не точно в октаву (2), а чуточку выше: Интервал между октавой, полученной шагами по 12-равномерным полутонам и чистой октавой равен (9/8)6:2 ≈ 1,0136 и называется пифагоровой коммой*.

Представляя пифагорову комму в виде


мы получим еще один важный результат: 12 квинт с точностью до пифагоровой коммы равны 7 октавам.

Но т. е. новый полутон содержал иррациональное число , которого пифагорейцы боялись как огня. Взять столь "некрасивое" число в качестве единицы измерения музыкальной гаммы было немыслимым для пифагорейцев: это противоречило всей философии целочисленных отношений. Поэтому пифагорейцы пошли другим путем: в качестве основы музыкальной гаммы они взяли квинту, "красивое" число 3/2.

* (Коммой (от греч. komma - отрезок) в музыкальной акустике называется интервал, не превышающий 1/9 целого тона. Пифагорова комма приблизительно равна 1/9 тона .)

Рассмотрим ряд, составленный из степеней числа 3/2:


Оказывается, с помощью этого красивого симметричного ряда можно получить все интервальные коэффициенты пифагорова строя. Начнем с середины ряда и все получаемые звуки будем сводить в одну октаву, умножая или деля их интервальные коэффициенты на нужные степени числа 2 (интервальный коэффициент октавы). Новые звуки будем обозначать либо ближайшим снизу основным звуком с добавлением слова "диез" при движении по квинтам вверх, либо ближайшим сверху основным звуком с добавлением слова "бемоль" при движении по квинтам вниз. Это означает соответственно повышение или понижение основного звука. Итак,

(8.2)

Как видим, двигаясь по квинтам вверх и вниз от основного тона, мы получили все ступени пифагорова строя (8.1), каждая из которых в свою очередь может быть повышена, понижена, дважды повышена или понижена и т. д. Процесс этот, к сожалению, бесконечен. Точного октавного повторения основного тона (до) мы так и не получим. (Легко видеть, что си-диез и ре-бемоль-бемоль совпадают с основным тоном (до) опять же с точностью до пифагоровой коммы.) Следовательно, и точно разделить октаву на целое число частей этим методом мы не сможем.

Таким образом, желая разделить пять тонов в (8.1) на полутона, мы получили, по крайней мере, 10 промежуточных звуков. Новый пифагоров строй примет вид (интервальные коэффициенты новых звуков для краткости опущены)


Какие из этих дополнительных звуков взять: с бемолями или диезами? Для музыкантов, играющих на инструментах с нефиксированной высотой звуков (скрипачей, например), эта проблема не стоит. Они берут и те и другие. В результате звучание скрипки становится более выразительным и контрастным, так как в ладе обостряются тяготения неустойчивых звуков к устойчивым. Этим во многом объясняется то "волшебное пение" скрипки, которое доступно только ей одной*.

* (Каким тонким является инструмент скрипка, убеждает простой пример из книги известного венгерского скрипача Карла Флеша "Искусство скрипичной игры": "Пусть на струне ля необходимо сыграть два звука ля и си-бемоль второй октавы. Разница между этими звуками равна 60 Гц. Расстояние на грифе - 2 мм, следовательно, на одно колебание струны приходится 1/30 мм. Предполагая, что ля взято чисто, и желая сыграть математически чисто си-бемоль, мы должны поставить палец в нужное место струны с точностью до 1/30 мм". Насколько же чувствительными должны быть слух и пальцы скрипача, чтобы отмерить расстояние с точностью до 1/30 мм (это 33 микрона)! )

Что касается инструментов с фиксированной высотой звуков, то введение десяти дополнительных звуков на семь основных слишком усложнило бы и сами инструменты, и игру на них. Тем более что и это не решало окончательно проблему и более тонкие построения требовали все новых и новых звуков. На сегодня в теории музыки известна масса строев с числом ступеней от 17 до 84! Но все они так и остались в кабинетах теоретиков. Практика же, руководствуясь мудрым критерием простоты (и красоты), оставила только пять дополнительных звуков: по одному в каждом из целых тонов. Они и стали черными (дополнительными) клавишами фортепиано.

Так в октаве стало 12 звуков. Поскольку каждая пара дополнительных звуков отличалась лишь на пифагорову комму (это легко проверить самостоятельно), то их попросту приравняли между собой (до-диез стал равен ре-бемолю и т. д.).

Такое приравнивание звуков с одинаковой высотой, но разными названиями в теории музыки называется энгармонизмом. Тонкости ладового звучания были принесены в жертву простоте. Инструменты же с числом звуков в октаве, превышающим 12, можно увидеть только в музеях. В московском Музее музыкальной культуры имени М. И. Глинки хранится рояль русского писателя, музыканта и музыковеда В. Ф. Одоевского (1804-1869), в каждой октаве которого имеется не 12, а 17 клавиш, настроенных согласно (8.2).

Квинтовая цепь пифагорова строя дала простой способ настройки инструментов с фиксированной высотой звуков: органов, клавесинов, фортепиано. От основного тона (сегодня по общему признанию им является звук ля первой октавы) откладывались семь октав - скелет музыкальной шкалы. Эти октавы заполнялись 12 звуками, полученными ходами по квинтам вверх и вниз. Какие из звуков взять за дополнительные - повышенные или пониженные,- особого значения не имело. Важно было другое: пифагорова комма оставалась внутри октавы. Ее можно было переместить в любое место октавы, но нельзя было сделать только одного: нельзя было от нее избавиться! И она продолжала портить кровь музыкантам на протяжении столетий. Почему?

Если взять пифагоров строй с пониженными дополнительными звуками:


то в таком строе все квинты будут звучать чисто (иметь интервальный коэффициент 3/2), кроме одной. Квинта си-соль-бемоль будет иметь интервальный коэффициент 1024/729:243/256≈1,4798, а не 1,5! От чистой квинты она, разумеется, отличается на пифагорову комму: 1,5/1,4798≈1,0136. Такая квинта на органе издавала пронзительный, неприятный звук, похожий на завывание волка, за что и была прозвана "волчьей квинтой" или просто "волком". Обращением "волчьей квинты" является "волчья кварта" соль-бемоль-си, которая также отличается от чистой кварты (4/3 = 1,333...) на пифагорову комму:

243/127:1024/729≈1,3515; 1,3515/1,3333≈1,0136. Можно сказать, что вся история развития музыкальных строев была историей борьбы с "волками". Но об этом - чуть позже.

А сейчас обратим внимание на второй существенный недостаток пифагорова строя. Его заметил еще во II веке древнегреческий ученый пифагореец Дидим. Дело в том, что пифагорова терция (81/64) при гармоническом, т. е. одновременном, исполнении обоих тонов, образующих терцию, звучит слишком напряженно. Дидим предложил заменить пифагорову терцию (81/64) так называемой "чистой терцией" (5/4 = 80/64), которая гармонически звучит значительно приятнее, хотя, как видим, лишь чуть-чуть отличается от пифагоровой терции. Разность пифагоровой и чистой терций (81/64:80/64 = 81/80≈1,0125) называется ди-димовой коммой и приблизительно равна 1/10 целого тона.

Однако идеи Дидима, как это не раз случалось с учеными Древней Греции, опередили историю почти на полторы тысячи лет. Они не нашли подходящей почвы для Развития, увяли, умерли и были воскрешены только в конце XV века...

Орган Домского собора в Риге. '... У него одного существуют те потрясающие звуки, те громы, тот величественный, говорящий будто из вечности голос, которого выражение невозможно никакому другому инструменту, никакому оркестру',- писал об органе В. Стасов
Орган Домского собора в Риге. '... У него одного существуют те потрясающие звуки, те громы, тот величественный, говорящий будто из вечности голос, которого выражение невозможно никакому другому инструменту, никакому оркестру',- писал об органе В. Стасов

...В XIV веке в Европе получает широкое распространение орган, ставший официальным инструментом католической церкви. С развитием органа развивается и многоголосие, которого не знала ни Древняя Греция, ни раннее средневековье. В течение столетий орган настраивался в пифагоровом строе. Никакого другого строя средневековье не знало. Но пифагоровы терции звучали на органе особенно жестко и не давали покоя музыкантам.

В XVI веке выдающийся итальянский композитор и музыкальный теоретик Джозеффо Царлино (1517-1590) воскресил идеи Дидима. Так родился новый квинтово-терцовый строй, названный чистым строем. Новое всегда с трудом пробивает себе дорогу. Учение Царлино подверглось резким нападкам. Любопытно, что среди тех, кто не признавал учения Царлино и вел с ним непримиримую борьбу, был Винченцо Галилей - выдающийся итальянский лютнист и отец великого революционера в науке Галилео Галилея. Почему чистая терция (5/4), ставшая наравне с квинтой полноправной хозяйкой нового строя, звучит приятнее пифагоровой, мы объясним в главе 10. Пока же отметим одну поразительную закономерность: интервальный коэффициент чистой терции (ее называют также большой терцией) есть среднее арифметическое интервальных коэффициентов основного тона (1) и квинты (3/2):

(8.3)

А дополнение большой терции (5/4) до квинты (3/2) - малая терция (3/2:5/4 = 6/5) - является средним гармоническим основного тона и квинты:

(8.4)

Оба этих интервала дают приятное звучание; таким образом, закон целочисленных отношений Пифагора расширяется, а внутри музыкальной гаммы появляются еще две пропорции!

Предполагают, что еще Архит умел выражать большую и малую терции как среднее арифметическое и гармоническое тона и квинты. Однако письменное свидетельство этому мы находим лишь в объемном труде "Универсальная гармония" Марена Мерсенна (1588-1648) - монаха францисканского ордена, французского математика, теоретика музыки и философа, учившегося в иезуитском колледже Ла Флеш вместе с Рене Декартом. Труд Мерсенна - нескончаемое исследование об интервалах, полное всеобъемлющих умозрений. На десяти страницах огромного формата автор глубокомысленно обсуждает, например, "является ли унисон консонансом", и попутно решает вопрос, "как бы человек мог поднять землю", и т. д. Однако, несмотря на чрезвычайную напыщенность, которая, впрочем, была неотъемлемой чертой всех сочинений того времени, работа Мерсенна содержала интересные идеи и прозрения. В частности это касалось консонантности и пропорций большой и малой терций. Сегодня большую и малую терции относят к группе несовершенных консонансов.

Но вернемся к работам Царлино. Выдающейся заслугой Царлино было не только выявление консонантности большой терции (5/4), но и построение "совершенной гармонии" - объединение большой терции и квинты в гармоническое трезвучие. Это был первый в истории музыки аккорд, а само трезвучие

(8.5)

ныне именуется мажорным и является основой всего гармонического языка музыки. Кроме того, Царлино обнаружил, что если отложить те же большую терцию и квинту вниз от основного тона, то окраска звучания аккорда существенно изменится. Светлые тона мажора подергиваются пасмурной дымкой иного звучания- минора. Приводя аккорд 2/3÷4/5÷1 к основному тону (умножая на 3/2, т. е. сдвигая вверх на квинту), получаем минорное трезвучие


Так был открыт закон, известный сегодня каждому юному музыканту: смена большой терции на малую переводит мажорное трезвучие в минорное:

(8.6)

Мажорное трезвучие было взято за основу чистого строя. Обрамляя мажорное трезвучие 1÷5/4÷3/2 такими же трезвучиями сверху и снизу


и сводя умножением и делением на 2 построенные звуки в одну октаву, получаем чистый строй лидийской гаммы (натурального мажора):

(8.7)

Здесь кружками отмечены тоны, изменившиеся по сравнению с пифагоровым строем (8.1), цифры внизу обозначают интервалы между ступенями.

Как видим, числовые характеристики чистого строя более простые. Однако сам строй стал менее равномерным: в нем, кроме полутона 16/15, появились две разновидности целых тонов 9/8 и 10/9. Знакомые с музыкальной грамотой, конечно, увидели, что мажорные трезвучия (4÷5÷6) чистого строя построены на тонике (до), субдоминанте (фа) и доминанте (соль).

С помощью целых тонов 9/8 и 10/9 и полутона 16/15 легко построить чистый строй фригийской гаммы (см. табл. 1, с. 107), который понадобится нам в части IV:

(8.8)

Мы не будем останавливаться на проблеме деления целых тонов чистого строя, тем более, что их теперь стало два. Отметим другое. Чистый строй в истории музыки сыграл короткую, но заметную роль. Его звучание стало намного ярче и богаче по сравнению с пифагоровым строем. Чистый строй способствовал формированию мажорного и минорного ладов, развитию музыкальной гармонии. Но...

Вместе с достоинствами пришли и недостатки. Все те же ненавистные музыкантам "волки" поселились теперь уже не на дополнительных, а на основных ступенях чистого строя! Легко проверить, что квинта между II и VI ступенями (ре-ля) является самым настоящим "волком": 5/3:9/8=40/27≈1,4815. Соответственно "волком" является и ее обращение - кварта (ля-ре1): 9/4:5/3=27/20= 1,35:


Следовательно, настроив орган в чистом строе от ноты до, например, органист не мог уже перейти в тональности ро мажор и ре минор, т. е. в те тональности, где "волчья квинта" входит в тоническое трезвучие и встречается наиболее часто. Разумеется, приходилось исключать и те тональности, где эта квинта входила в доминанту и субдоминанту, которые также являются основными ступенями лада. Таким образом, органист оказывался что называется связанным по рукам: модуляции, т. е. переходы, в другие тональности были крайне ограничены и опасны, и это лишало музыку значительной части ее выразительных средств.

"Волки" продолжали донимать органистов. На фоне "совершенной гармонии" чистого строя это было особенно невыносимо. Забавный случай рассказывают о знаменитом французском композиторе и теоретике музыки, страстном приверженце чистого строя, Жане Рамо (1683 -1764). Однажды Рамо, желая отказаться от предлагаемой ему должности церковного органиста, "выпустил" из органа столько "волков", что своей игрой привел в ужас святых отцов и убедил их в своей "бесталанности". Святые отцы поспешили удалиться вместе со своими лестными предложениями.

Однако проблема оставалась. Выгнать "волков" из органа, т. е. найти закон построения нового музыкального строя, а значит, и рецепт новой настройки органа, наряду с музыкантами безрезультатно пытались и математики: Кеплер, Декарт, Лейбниц, Эйлер. О теории гармонии Эйлера шутливо говорили, что она слишком музыкальна для математиков и слишком математична для музыкантов.

Но то, что не смог сделать изощренный ум математика, сделала обыкновенная смекалка простого органиста...

предыдущая главасодержаниеследующая глава











© MATHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'Математическая библиотека'
Рейтинг@Mail.ru