Новости    Библиотека    Энциклопедия    Биографии    Карта сайта    Ссылки    О проекте




предыдущая главасодержаниеследующая глава

Цифровая лестница

Любопытно, что получится, если число 111111111, с которым мы сейчас имели дело, умножить само на себя? Заранее можно подозревать, что результат должен быть диковинный, но какой именно?

Если вы обладаете способностью четко рисовать в воображении ряды цифр, вам удастся найти интересующий нас результат, даже не прибегая к выкладкам на бумаге. В сущности, здесь дело сводится только к надлежащему расположению частных произведений, потому что умножать приходится все время лишь единицу на единицу - действие, могущее затруднить разве лишь фонвизинского Митрофанушку, размышлявшего о результате умножения "единожды один". Сложение же частных произведений сводится к простому счету единиц*. Вот результат этого единственного в своем роде умножения (при выполнении которого не приходится ни разу прибегать к действию умножения):


* (В двоичной системе счисления, как мы уже объяснили, все умножения именно такого рода. На этом примере еще раз наглядно убеждаемся в преимуществах двоичной системы.)

Все девять цифр результата симметрично убывают от середины в обе стороны.

Те из читателей, которых утомило обозрение числовых диковинок, могут покинуть здесь галерею и перейти в следующие отделения, где показываются фокусы и выставлены числовые великаны и карлики; я хочу сказать: они могут прекратить чтение этой главы и обратиться к дальнейшим. Но кто желает познакомиться еще с несколькими интересными достопримечательностями мира чисел, приглашаю осмотреть со мною небольшой ряд ближайших витрин.

предыдущая главасодержаниеследующая глава




ИНТЕРЕСНО:

Зачем математики ищут простые числа с миллионами знаков?

Задача построения новых оснований математики - унивалентные основания

Многомерный математический мир… в вашей голове

В школах Великобритании введут китайские учебники математики

Найдено самое длинное простое число Мерсенна, состоящее из 22 миллионов цифр

Как математик помог биологам совершить важное открытие

Математические модели помогут хирургам

Почему в математике чаще преуспевают юноши

Физики-практики откровенно не любят математику

В индийской рукописи нашли первое в истории упоминание ноля

Вавилонская глиняная табличка оказалась древнейшей «тригонометрической таблицей» в мире

Ученые рассказали о важной роли игр с пальцами в обучении детей математике
Пользовательского поиска

© Злыгостев Алексей Сергеевич, статьи, подборка материалов, оформление, разработка ПО 2001-2018
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'MathemLib.ru: Математическая библиотека'
Рейтинг@Mail.ru