Новости    Библиотека    Энциклопедия    Биографии    Карта сайта    Ссылки    О проекте




предыдущая главасодержаниеследующая глава

Из страны пирамид

Весьма вероятно, что описанный способ дошел до нас из глубочайшей древности и из отдаленной страны - из Египта. Мы мало знаем, как производили арифметические действия обитатели древней Страны пирамид. Но сохранился любопытный документ - папирус, на котором записаны арифметические упражнения ученика одной из землемерных школ древнего Египта. - это так называемый "папирус Ринда", относящийся ко времени между 2000 и 1700 годом до нашей эры* и представляющий собой копию еще более древней рукописи, переписанную неким Аамесом. Писец** Аамес, найдя "ученическую тетрадку" этой отдаленнейшей эпохи, тщательно переписал все арифметические упражнения будущего землемера - вместе с их ошибками и исправлениями учителя - и дал своему списку торжественное заглавие, которое дошло до нас в следующем неполном виде:

„Наставление, как достигнуть 
знания всех темных вещей... 
всех тайн, сокрытых в вещах.
Составлено при царе Верхнего 
и Нижнего Египта Ра-а-усе, 
дающем жизнь, по образцу 
древних сочинений времен царя 
Ра-ен-мата писцом Аамесом".

* (Папирус, заключенный в металлический футляр, был разыскан английским египтологом Генри Риндом. В развернутом виде имеет 20 м длины, при 30 см ширины. Хранится в Британском музее, в Лондоне.)

** (Звание "писец" принадлежало третьему классу египетских жрецов; в заведывании их находилось "все относившееся к строительной части храма и к его земельной собственности". Математические, астрономические и географические знания составляли их главную специальность (В. Бобынин).)

Египетское изображение писца. Писцы в древнем Египте принадлежали к третьему классу жрецов; они заведовали землями и строительной частью храма. Обучение писца наукам, требующимся для этой должности, продолжалось 12 лет
Египетское изображение писца. Писцы в древнем Египте принадлежали к третьему классу жрецов; они заведовали землями и строительной частью храма. Обучение писца наукам, требующимся для этой должности, продолжалось 12 лет

В этом интересном документе, насчитывающем за собой около сорока веков и свидетельствующем о еще более глубокой древности, мы находим четыре примера умножения, выполненные по способу, живо напоминающему наш русский народный способ. Вот эти примеры (точки впереди чисел обозначают число единиц множителя; знаком + мы отметили числа, подлежащие сложению):


Вы видите из этих примеров, что еще за тысячелетия до нас египтяне пользовались приемом умножения, довольно сходным с нашим крестьянским, и что неведомыми путями он как бы перекочевал из древней Страны пирамид в современную эпоху. Если бы обитателю земли фараонов предложили перемножить, например, 19 X 17, он произвел бы это действие следующим образом: написал бы ряд последовательных удвоений числа 17


и затем сложил бы те числа, которые отмечены здесь знаком +, то-есть 17 + 34 + 272. Он получил бы, конечно, вполне правильный результат: 17 + (2 X 17) + (16 X 17) = 19 X 17. Легко видеть, что подобный прием по существу весьма близок к нашему крестьянскому (замена умножения рядом последовательных удвоений).

Египетские цифры иератического письма из папируса Ринда
Египетские цифры иератического письма из папируса Ринда

Трудно сказать, у одних ли наших крестьян был в ходу такой древний способ умножения; английские авторы называют его именно "русским крестьянским способом"; в Германии крестьяне кое-где хотя и пользуются им, но также называют его "русским".

Чрезвычайно интересно было бы получить от читателей сведения о том, применяется ли сейчас где-нибудь этот древний способ умножения, имеющий за собой такое долгое и оригинальное прошлое. Следовало бы вообще с большим вниманием относиться к народной математике: вникать в употребляемые народом приемы счета и измерений, собирать и записывать эти памятники народного математического творчества, дошедшие до нашего времени из глубин седой старины.

На это давно указывал историк математики В. В. Бобынин*, предложивший даже краткую программу собирания памятников народной математики. Не лишним будет, пожалуй, привести здесь составленный им перечень того, что именно следует собирать и записывать: 1) счисление и счет, 2) приемы меры и веса, 3) геометрические сведения и их выражение в постройках, нарядах и украшениях, 4) способы межевания, 5) народные задачи, 6) пословицы, загадки и вообще произведения народной словесности, имеющие отношение к математическим знаниям, 7) памятники древней народной математики, находящиеся в рукописях, музеях, коллекциях и т. д. или находимые при раскопках курганов, могил, городищ и проч.

* (Бобынин В. В. (1849-1919) - первый историк математики в России.)

предыдущая главасодержаниеследующая глава




ИНТЕРЕСНО:

Петер Шольц - самый молодым лауреат Филдсовской премии

Кашер Биркар - беженец из Ирана - стал лауреатом Филдсовской премии

Эмми Нётер — была великой женщиной и при этом величайшей женщиной-математиком

Зачем математики ищут простые числа с миллионами знаков?

Задача построения новых оснований математики - унивалентные основания

Многомерный математический мир… в вашей голове

В школах Великобритании введут китайские учебники математики

Найдено самое длинное простое число Мерсенна, состоящее из 22 миллионов цифр

Как математик помог биологам совершить важное открытие

Математические модели помогут хирургам

Почему в математике чаще преуспевают юноши

Физики-практики откровенно не любят математику

В индийской рукописи нашли первое в истории упоминание ноля

Вавилонская глиняная табличка оказалась древнейшей «тригонометрической таблицей» в мире

Ученые рассказали о важной роли игр с пальцами в обучении детей математике
Пользовательского поиска

© Злыгостев Алексей Сергеевич, статьи, подборка материалов, оформление, разработка ПО 2001-2018
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'MathemLib.ru: Математическая библиотека'
Рейтинг@Mail.ru