|
"Русский" способ умноженияВы не можете выполнить умножение многозначных чисел, хотя бы даже двузначных, если не помните наизусть всех результатов умножения однозначных чисел, то-есть того, что называется таблицей умножения. В старинной "Арифметике" Магницкого, о которой мы уже упоминали, необходимость твердого знания таблицы умножения воспета в таких - чуждых для современного слуха - стихах: Аще кто не твердит таблицы и гордит, Не может познати числом что множати И во всей науки, несвобод от муки, Колико не учит, туне ся удручит И в пользу не будет, аще ю забудет. Автор этих стихов, очевидно, не знал или упустил из виду, что существует способ перемножать числа и без знания таблицы умножения. Способ этот, не похожий на наши школьные приемы, употребителен в обиходе великорусских крестьян и унаследован ими от глубокой древности. Сущность его в том, что умножение любых двух чисел сводится к ряду последовательных делений одного числа пополам при одновременном удвоении другого числа. Вот пример: 32 Х 13 16 X 26 8 Х 52 4 Х 104 2 X 208 1 X 416 Деление пополам продолжают до тех пор, пока в частном не получится 1, параллельно удваивая другое число. Последнее удвоенное число и дает искомый результат. Нетрудно понять, на чем этот способ основан: произведение не изменяется, если один множитель уменьшить вдвое, а другой вдвое же увеличить. Ясно поэтому, что в результате многократного повторения зтой операции получается искомое произведение: 32 X 13 = 1 X 416. Однако как поступить, если при этом приходится делить пополам число нечетное? Народный способ легко выводит из этого затруднения. Надо - гласит правило - в случае нечетного числа откинуть единицу и делить остаток пополам; но зато к последнему числу правого столбца нужно будет прибавить все те числа этого столбца, которые стоят против нечетных чисел левого столбца; сумма и будет искомым произведением. Практически это делают так, что все строки с четными левыми числами зачеркивают; остаются только те, которые содержат налево нечетное число. Приведем пример (звездочки указывают, что данную строку надо зачеркнуть): 19 X 17 9 X 34 4 X 68* 2 X 136* 1 X 272 Сложив незачеркнутые числа, получаем вполне правильный результат: 17 + 34 + 272 = 323. На чем основан этот прием? Обоснованность приема станет ясна, если принять во внимание, что 19 Х 17 = (18 + 1)17 = 18 X 17 + 17, 9 X 34 = (8 + 1)34 = 8 X 34 + 34 и т. д. Ясно, что числа 17, 34 и т. п., утрачиваемые при делении нечетного числа пополам, необходимо прибавить к результату последнего умножения, чтобы получить произведение.
|
|
|||
© MATHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить ссылку на страницу источник: http://mathemlib.ru/ 'Математическая библиотека' |