![]() |
Брус наибольшего объемаЗадача Из цилиндрического бревна надо выпилить прямоугольный брус наибольшего объема. Какой формы должно быть его сечение (рис. 23)? ![]() Рис. 23. Из цилиндрического бревна надо выпилить прямоугольный брус наибольшего объема Решение Если стороны прямоугольного сечения х и y, то по теореме Пифагора x2 + y2 = d2, где d - диаметр бревна. Объем бруса наибольший, когда площадь его сечения наибольшая, т. е. когда ху достигает наибольшей величины. Но если ху наибольшее, то наибольшим будет и произведение х2y2. Так как сумма х2 + y2 неизменна, то, по доказанному ранее, произведение х2y2 наибольшее, когда х2 = y2 или х = y. Итак, сечение бруса должно быть квадратным. |
![]()
|
|||
![]() |
|||||
© MATHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить ссылку на страницу источник: http://mathemlib.ru/ 'Математическая библиотека' |