НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    БИОГРАФИИ    КАРТА САЙТА    ССЫЛКИ    О ПРОЕКТЕ  

предыдущая главасодержаниеследующая глава

2. Вывод уравнения конхоиды

Рассмотрим конхоиду прямой AB с полюсом в точке O (рис. 23). Пусть a - расстояние полюса O до прямой AB, а b - параметр. Пусть M - произвольная (текущая) точка конхоиды, координаты которой относительно некоторой системы координат XOY суть x и y. Найдем уравнение, которому удовлетворяют x и y. Для этой цели выберем систему координат XOY так, чтобы начало координат находилось в полюсе O, ось OX пошла по прямой OK, а ось OY - параллельно AB.

Рис. 23
Рис. 23

Опустим из точки M на оси OX и OY соответственно перпендикуляры MN и MQ. Обозначим через D точку пересечения прямых AB и MQ, а через E - точку пересечения прямых AB и OM. Из чертежа легко усмотреть, что Откуда


или


Возводя в квадрат обе части полученного уравнения и освобождаясь от дробности, получим:


Это и будет искомое уравнение конхоиды.

Выходит, что конхоида Никомеда есть алгебраическая кривая четвертого порядка.

предыдущая главасодержаниеследующая глава








© Злыгостев Алексей Сергеевич, статьи, подборка материалов, оформление, разработка ПО 2001-2019
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'Математическая библиотека'
Рейтинг@Mail.ru