Новости    Библиотека    Энциклопедия    Биографии    Карта сайта    Ссылки    О проекте




предыдущая главасодержаниеследующая глава

§ 5. О приближенной квадратуре круга

Из формулы видно, чтобы решить задачу о квадратуре круга, достаточно построить отрезок, равный числу π. Но построить отрезок, равный числу π, при помощи циркуля и линейки невозможно, так как число π, как показал Линдеман, есть число трансцендентное. Таким образом, старания древних ученых найти при помощи циркуля и линейки отрезок, длина которого точно равнялась бы числу π, не могли увенчаться успехом и, как следовало ожидать, приводили к приближенным результатам. Само собой разумеется, что если число π вычислять приближенно, то и квадратура круга будет выполняться приближенно. На этот путь приближенного вычисления числа π, начиная с глубокой древности, и встали ученые многих народов.

Рассмотрим историю этого вопроса более подробно.

предыдущая главасодержаниеследующая глава



ИНТЕРЕСНО:

Многомерный математический мир… в вашей голове

В школах Великобритании введут китайские учебники математики

Найдено самое длинное простое число Мерсенна, состоящее из 22 миллионов цифр

Как математик помог биологам совершить важное открытие

Математические модели помогут хирургам

Почему в математике чаще преуспевают юноши

Физики-практики откровенно не любят математику

В индийской рукописи нашли первое в истории упоминание ноля

Вавилонская глиняная табличка оказалась древнейшей «тригонометрической таблицей» в мире

Ученые рассказали о важной роли игр с пальцами в обучении детей математике
Пользовательского поиска

© Злыгостев Алексей Сергеевич, статьи, подборка материалов, оформление, разработка ПО 2001-2017
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'MathemLib.ru: Математическая библиотека'
Рейтинг@Mail.ru