НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    БИОГРАФИИ    КАРТА САЙТА    ССЫЛКИ    О ПРОЕКТЕ  

предыдущая главасодержаниеследующая глава

Разнообразив погоды

Задача

Будем характеризовать погоду только по одному признаку, - покрыто ли небо облаками или нет, т. е. станем различать лишь дни ясные и пасмурные. Как вы думаете, много ли при таком условии возможно недель с различным чередованием погоды?

Казалось бы, немного: пройдет месяца два, и все комбинации ясных и пасмурных дней в неделе будут исчерпаны; тогда неизбежно повторится одна из тех комбинаций, которые уже наблюдались прежде.

Попробуем, однако, точно подсчитать, сколько различных комбинаций возможно при таких условиях. Это -одна из задач, неожиданно приводящих к пятому математическому действию.

Итак: сколькими различными способами могут на одной неделе чередоваться ясные и пасмурные дни?

Решение

Первый день недели может быть либо ясный, либо пасмурный; имеем, значит, пока две "комбинации".

В течение двухдневного периода возможны следующие чередования ясных и пасмурных дней:

     ясный и ясный 
   ясный и пасмурный 
   пасмурный и ясный 
 пасмурный и пасмурный.

Итого в течение двух дней 22 различного рода чередований. В трехдневный промежуток каждая из четырех комбинаций первых двух дней сочетается с двумя комбинациями третьего дня; всех родов чередований будет

22 × 2 = 23.

В течение четырех дней число чередований достигнет

23 × 2 = 24.

За пять дней возможно 25, за шесть дней 26 и, наконец, за неделю 27 = 128 различного рода чередований.

Отсюда следует, что недель с различным порядком следования ясных и пасмурных дней имеется 128. Спустя 128 × 7 = 896 дней необходимо должно повториться одно из прежде бывших сочетаний; повторение, конечно, может случиться и раньше, но 896 дней - срок, по истечении которого такое повторение неизбежно. И обратно: может пройти целых два года, даже больше (2 года и 166 дней), в течение которых ни одна неделя по погоде не будет похожа на другую.

предыдущая главасодержаниеследующая глава











© MATHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'Математическая библиотека'
Рейтинг@Mail.ru