Новости    Библиотека    Энциклопедия    Биографии    Карта сайта    Ссылки    О проекте




предыдущая главасодержаниеследующая глава

Введение

Первые задачи на построение возникли в глубокой древности. Возникли они из хозяйственных потребностей человека. Уже древним архитекторам и землемерам приходилось решать простейшие задачи на построение, связанные с их профессией.

Самые первые задачи на построение, по-видимому, решались непосредственно на местности и заключались в проведении (провешивании) прямых линий и построении прямого угла с использованием для этого так называемого "египетского треугольника" со сторонами 3, 4 и 5.

К задачам на построение прибегали древние инженеры, когда составляли рабочий чертеж того или иного сооружения и решали вопросы, связанные с отысканием красивых геометрических форм сооружения и его наибольшей вместимости.

Решения простейших геометрических задач на построение, которые помогали людям в их хозяйственной жизни, формулировались в виде "практических правил", исходя из наглядных соображений. Именно эти задачи и были основой возникновения наглядной геометрии, нашедшей довольно широкое развитие у древних народов Египта, Вавилона, Индии и др.

Однако практические правила первых землемеров, архитекторов и астрономов еще не составляли настоящей геометрии как дедуктивной науки, основанной на теоретических построениях и доказательствах.

Задачи на построение нашли широкое распространение в древней Греции, где впервые создалась геометрическая теория в систематическом изложении.

Первым греческим ученым, который занимался решением геометрических задач на построение, был Фалес Милетский (624-547 гг. до н. э.). Это он, пользуясь построением треугольников, определил расстояние, недоступное для непосредственного измерения - от берега до корабля в море. Это он вычислил высоту египетской пирамиды по отбрасываемой ею тени.

Большую роль в развитии задач на построение сыграл Пифагор (ок. 580-500 гг. до н. э.). По свидетельству греческого историка математики Прокла (412-485 гг.), "Пифагор впервые разработал принцип геометрии и теоремы невещественным разумным путем". Пифагор и его ученики потратили много сил, чтобы отдельным геометрическим сведениям, состоящим до того времени из набора интуитивных правил, придать характер настоящей науки, основанной на логических умозрительных доказательствах. С именем Пифагора связана теорема, согласно которой в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов его катетов. По-видимому, эту теорему сам Пифагор (или его ученики) доказывал при помощи геометрических построений, опираясь на понятие равновеликости равносоставленных фигур.

Пифагору приписывается еще ряд замечательных открытий, наиболее важные из которых следующие:

  1. Теорема о сумме внутренних углов треугольника.
  2. Задача о покрытии. Пифагор путем построения и некоторыми рассуждениями показал, что плоскость может быть заполнена (покрыта) без наложений или правильными треугольниками, или квадратами, или правильными шестиугольниками.
  3. Геометрические способы решения квадратного уравнения.
  4. Правило решить задачу: "По данным двум фигурам построить третью, которая была бы равновелика одной из данных и подобна другой".

Упомянутый выше Прокл и древнегреческий историк Плутарх (ок. 46-126 гг.), автор "Сравнительных жизнеописаний", утверждают, что Пифагор решил следующие задачи на построение:

  1. Построить среднюю пропорциональную между двумя данными отрезками.
  2. На данном отрезке построить параллелограмм, равный данному и имеющий угол, равный заданному углу.
  3. Построить правильный пятиугольник.

Пифагор и его ученики, кроме правильного пятиугольника, умели строить правильные многоугольники, у которых число сторон равняется 3, 4, 6, 8, 10, 16. Но они были совершенно бессильны в построении правильных семиугольников, девятиугольников и одиннадцатиугольников.

Особенно большое внимание задачам на построение уделял Платон (427-347 гг. до н. э.), основатель "Академии" в Афинах, где преподавал философию более 20 лет. Недаром, как говорит предание, при входе в свою академию, которая размещалась в роскошном городском саду, Платон сделал надпись: "Пусть не входит сюда тот, кто не знает геометрии".

Платон
Платон

Хотя многие историки математики склонны считать, что значение Платона, как геометра, слишком преувеличено, тем не менее историки Диоген и Лаэрций, жившие в III-IV вв. н. э., и Прокл утверждают, что в области геометрии Платону принадлежит ряд замечательных открытий, из которых выделяются следующие:

  1. Способ находить стороны прямоугольного треугольника в рациональных числах.
  2. Изобретение инструмента, при помощи которого механически решается вопрос о нахождении двух среднепропорциональных отрезков прямых между двумя данными.
  3. Пополнил теорию иррациональных величин, которая получила начало в пифагорейской школе, но не была достаточно развита.
  4. Продвинул вперед стереометрию, которая раньше отставала от планиметрии.
  5. Подведение под геометрию логического фундамента.

В саду знаменитой "Академии" Платона, который был излюбленным местом для диспутов философов и геометров, были впервые критически разработаны в логической последовательности как основные начала, на которых должна строиться геометрическая наука, так и ее основные теоремы. Под сенью этой академии, по-видимому, и были сформулированы основные методы доказательств, из которых до нас дошли, как платоновские методы, "аналитико-синтетический метод" и "способ приведения к нелепости".

Платон с учениками в саду Академии
Платон с учениками в саду Академии

Только в школе Платона задачи на построение получили надлежащее обоснование. Всякая сложная задача, по Платону, должна решаться аналитико-синтетическим методом, т. е. путем проведения "анализа" и "синтеза", причем анализ, как правило, должен предшествовать синтезу. В связи с решением задач на построение в платоновской школе выработалось понятие "о геометрическом месте точек", как о непрерывном ряде точек, удовлетворяющем определенному условию. Такие важные кривые, как конхоида, циссоида, квадратриса, открытые в разное время древнегреческими геометрами, можно рассматривать как наиболее интересные примеры геометрических мест.

Платон и его ученики считали построение геометрическим, если оно выполнялось при помощи циркуля и линейки, т. е. путем проведения окружностей и прямых линий. Если же в процессе построения использовались другие чертежные инструменты, то построение не считалось геометрическим. Древние греки вслед за Платоном стремились к геометрическим построениям и считали их идеалом в геометрии.

Уже в древности греческие математики встретились с тремя задачами на построение, которые не поддавались решению. Эти задачи следующие:

Первая задача. Задача об удвоении куба. Требуется построить ребро куба, который по объему был бы в два раза больше данного куба.

Вторая задача. Задача о трисекции угла. Требуется произвольный угол разделить на три равные части.

Третья задача. Задача о квадратуре круга. Требуется построить квадрат, площадь которого равнялась бы данному кругу.

Эти три задачи и носят название "знаменитых геометрических задач древности". Им и посвящается настоящая книга.

Большое место задачам на построение отводится в "Началах" Евклида (III в. до н. э.), где существование фигур доказывается их построением при помощи циркуля и линейки. В "Началах" Евклида находятся почти все задачи на построение, которые изучаются в настоящее время в школе.

предыдущая главасодержаниеследующая глава



ИНТЕРЕСНО:

Многомерный математический мир… в вашей голове

В школах Великобритании введут китайские учебники математики

Найдено самое длинное простое число Мерсенна, состоящее из 22 миллионов цифр

Как математик помог биологам совершить важное открытие

Математические модели помогут хирургам

Почему в математике чаще преуспевают юноши

Физики-практики откровенно не любят математику

В индийской рукописи нашли первое в истории упоминание ноля

Вавилонская глиняная табличка оказалась древнейшей «тригонометрической таблицей» в мире

Ученые рассказали о важной роли игр с пальцами в обучении детей математике
Пользовательского поиска

© Злыгостев Алексей Сергеевич, статьи, подборка материалов, оформление, разработка ПО 2001-2017
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'MathemLib.ru: Математическая библиотека'
Рейтинг@Mail.ru