|
ПредисловиеПраво же, не будет ошибкой предположить, что у большинства читателей слова "код", "кодирование" вызывают примерно одинаковые представления. Ведь все хорошо знают, что коды или шифры используются для передачи секретной информации. Менее известно, однако, что в наше время коды приобрели и иное значение, быть может, более обыденное, но зато куда более важное и широкое. В этой их новой роли коды и кодирование - прежде всего средство для экономной, удобной и практически безошибочной передачи сообщений. Новые применения кодов сложились в результате бурного развития различных средств связи, неизмеримо возросшего объема передаваемой информации. Решать возникшие в связи с этим задачи было бы невозможно без привлечения самых разнообразных математических методов. Неслучайно поэтому теория кодирования считается сейчас одним из наиболее важных разделов прикладной математики. Желание познакомить широкий круг читателей с задачами и методами этой теории и является основной нашей целью. Все же немного места уделили мы также кодам в их изначальном смысле - как средству обеспечения секретности. Первая часть книги (§§ 1-10) написана вполне элементарно, и для ее понимания читателю достаточно ознакомиться с приложением 1, содержащим простейшие сведения о сравнениях. В дальнейшем изложении, однако, существенно используются основные факты линейной алгебры, а также факты, связанные с понятиями поля и группы. Все необходимые определения и теоремы содержатся в приложениях 2-5. Не освоившись с материалом этих приложений, читатель не смог бы свободно ориентироваться во второй части книги. В заключение отметим, что в конце большинства параграфов имеется раздел "Задачи и дополнения", где рассматриваются некоторые более специальные и, как правило, более трудные вопросы, а также приводятся задачи для самостоятельного решения. Читателю, желающему основательно разобраться в содержании книги, мы рекомендуем не пренебрегать этими задачами.
|
|
|||
© MATHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить ссылку на страницу источник: http://mathemlib.ru/ 'Математическая библиотека' |