![]() |
I. Статьи о полиминоA) Scientific American: [1] Gardner M., заметки в рубрике "Математические развлечения и игры"*: * (См. также составленные по материалам журнала Scientific American книги [34-36].) а) About the Remarkable Similarity Between the Icosian Game and the Tower of Hanoi, 196, № 5, 154-156 (1957). б) More about Complex Dominoes, Plus the Answers to Last Month's Puzzles, 197, № 6, 126-129 (1957). в) A Game in Which Standard Pieces Composed of Cubes Are Assembled into Larger Forms (Soma Cubes), 199, № 3, 182-188 (1958). г) More about the Shapes That Can Be Made with Complex Dominoes, 203, № 5, 186-194 (1960). д) A New Collection of Brain Teasers, 204, № 6, 168 (1961). е) Some Puzzles Based on Checkerboards and Answers to Last Month's Problems, 207, № 5, 151-159 (1962). ж*) Of Sprouts and Brussels Sprouts, Games with a Topological Flavor, 217, № 1, 112-116 (1967). з*) Pleasurable Problems with Polycubes, and the Winning Strategy for Slither, 227, № 3, 176-182 (1972). Б) Recreational Mathematics Magazine: [2] Golomb S. W., The General Theory of Polyominoes: а) Dominoes, Pentominoes, and Checkerboards, № 4, 3-12 (1961). б) Patterns and Polyominoes, №5,3-12 (1961) (см. также Notes, 13-14). в) Pentomino Exclusion by Monominoes, № 6, 3-20 (1961). г) Extensions of Polyominoes, № 8, 7-16 (1962). [3] Anderson J. H.: а) Polyominoes - The "Twenty Problem", № 9, 25-30 (1962). б) Polyominoes - The "Twenty Problem" and Others, № 10, 25-28 (1962). В) New Scientist: [4] O'Beirne Т. Н., заметки в рубрике "Игры и парадоксы": а) Pell's Equation in Two Popular Problems, № 258, 260-261 (1961). б) Pentominoes and Hexiamonds, № 259, 316-317 (1961). в) Some Hexiamond Solutions and an Introduction to a Set of 25 Remarkable Points, № 260, 379-380 (1961). г) For Boys, Men and Heroes, № 266, 751-752 (1961). д) Some Tetrabolical Difficulties, № 270, 158-159 (1962). Г) Fairy Chess Review: [5] Dawson T. R., Lester W. E., A Notation for Dissection Problems, 3, № 5, 46-47 (1937). [6] Stead W., Dissection, 9, № 1, 2-4 (1954). Д) American Mathematical Monthly: [7] Golomb S. W., Checkerboards and Polyominoes, 61, № 10, 672-682 (1954). [8*] Golomb S. W., Klarner D. A., Covering a Rectangle with L-tetrominoes, 70, № 7, 760-761 (1963). [9*] Walkup D. W., Coverning a Rectangle with T-tetrominoes, 72, № 9, 986-988 (1965). [10*] Kelly J. В., Polynomials and Polyominoes, 73, № 5, 464-471 (1966). [11*] Spira R., Gannon D., Impossibility of Covering a Rectangle with L-Hexominoes, 75, № 7, 785-786, 1968. E*) Квант: [12] Сойфер А. Ю., Клетчатые доски и полимино, № 11, 2-10 (1972). [13] Колотов А. Т., Об одном разбиении прямоугольника, № 1, 14-16 (1973). [14] Кордемский Б. А., Красочная комбинаторика, № 9, 18-23 (1973). [15] Сойфер А. Ю.: а) Наш зоопарк, № 1, 64, 1973. б) Новоселы зоопарка "Кванта", № 9, 1973, стр. 77. Ж*) Наука и жизнь: [16] Пентамино, 1967, № 2, 68-69; № 3, 41; № 4, 148-149; № 5, 53; № 6, 65; № 7, 44-45; № 8, 120-121; № 10, 154-155; № 11, 142-143; № 12, 116-117; 1968, № 1, 85-86. [17] Гексатрион, 1968, № 1, 86-87; № 6, 37; № 11, 63. [18] Еж в клетке, 1968, № 9, 123. З*) Journal of Combinatorial Theory: [19] Golomb S. W., Tiling with Polyominoes, 1, 280-296 (1966). [20] Klarner D. A., Packing a Rectangle with Congruent N-ominoes, 7, 107-115 (1969). (См. выше). [21] Bouwkamp С. J., Packing a Rectangle Box with Twelve Solid Pentominoes, 7, 278-280 (1969). [22] Golomb S. W., Tiling with Sets of Polyominoes, 9, 60-71 (1970). (Ср. выше). И) Разные журналы и сборники: [23] Reeve J. E., Tyrrell J. A., Maestro Puzzles, Mathematical Gazette, 45, 97-99 (1961). [24] Read R. C, Contributions to the Cell Growth Problem, Canad. Journal of Math., 14, № 1, 1-20 (1962). [25] Hajtman Bela, On Coverings of Generalized Checkerboards I, Magyar Tud. Akad. Mat. Kutato Int. Kbze., 7, 53-71 (1962). [26*] Klarner D. A., Some Results Concerning Polyominoes, Fibonacci Quart., 3, № 1, 9-20 (1965). [27*] Klarner D. A., Cell Growth Problems, Canad. Journal of Math., 19, 851-863 (1967). [28*] Klarner D. A., Methods for the General Cell Growth Problems сб. "Combinatorial Theory and its Applications", Balatonfured (Hungary), 705-720 (1969). [29*] Klarner D. A., Rivest R., A Procedure for Improving the Upper Bound for the Number of n-ominoes, Canad. Journal of Math., 25, 585-602 (1973). [29*a] Klarner D. A. Rivest R., Asymptotic Bounds for the Number of Convex n-ominoes, Discrete Math., 8, № 1, 31-40(1974). [30*] Lunnon W. F., Counting Polyominoes, в сб. "Computers in Number Theory" (состав. A. O. L. Atkin, B. J. Birch), London, Academic Press, 1971, 347-372. [31*] Lunnon W. F.,CountingHexogonar and Triangular Polyominoes, в сб. "Graph Theory and Computing" (состав. R. C. Read), New York-London, Academic Press, 1972, 87-100. [32*] Lunnon W. F., Symmetry of Cubical and General Polyominoes, в том же сборнике, что и [31], стр. 101-108. |
![]()
|
|||
![]() |
|||||
© MATHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить ссылку на страницу источник: http://mathemlib.ru/ 'Математическая библиотека' |