Новости    Библиотека    Энциклопедия    Биографии    Карта сайта    Ссылки    О проекте




предыдущая главасодержаниеследующая глава

VII. Музыка сфер

Несмотря на ту высокую степень развития, 
до которой доведены науки математические 
трудами великих геометров трех последних 
столетий, практика обнаруживает ясно 
неполноту их во многих отношениях...

Пафнутий Львович Чебышев

Музыка сфер
Музыка сфер

"Я тут не так давно разработал очень любопытный удар лапой эн в икс направлении",- говорит Дракон в пьесе Евгения Львовича Шварца. Очевидно, и омерзительный "летун-хлопотун" что-то искал в многомерном пространстве - наверное, защиту от неминуемой кары. Швейцарского математика Людвига Шлефли, символами которого мы пользовались, говоря о плоских мозаиках и трехмерных многогранниках, интересовало другое. В своей книге "Теория многократной непрерывности" он поставил такой вопрос: правильных многоугольников на плоскости может быть сколько угодно, правильных же многогранников существует только пять. Но это в пространстве трех измерений, а что будет в четвертом? Шлефли установил, что там имеют вид на жительство шесть правильных гипертел - аналогов пяти платоновых. Эти правильные сверхмногогранники, или политопы, состоят из Платоновых тел, которые называются теперь "ячейками политопа", соединенных между собой так, что каждая грань их принадлежит двум, а каждое ребро - сразу нескольким ячейкам. Если, как принято, обозначить это "нескольким" латинской буквой r, то символ Шлефли для политопа будет выглядеть так: {р, q, r}.

Музыка сфер
Музыка сфер

Что он означает, наверное, ясно.

Итак, политоп - крайний член последовательности все усложняющихся геометрических образцов: точка - линия - многоугольник - многогранник - политоп. Само это слово придумал в 1882 году Рейнгольд Хоппе - тот самый немецкий математик, что пусть с опозданием на 180 лет, но сумел рассудить спор Ньютона и Грегори, с рассказа о котором началась эта книга. Но в научный обиход оно вошло уже только в нашем веке благодаря Алисе Стотт, родной сестре Этель Лилиан Войнич, автора романа "Овод". Их отец Джордж Буль, известный математик, создатель целой науки - алгебры логики, сумел передать каждой из пяти дочерей часть своих разносторонних талантов. Алиса, например, обладала прекрасным пространственным воображением - она умела воображать четырехмерные фигуры. Сделанные ею модели политопов и по сию пору можно увидеть в Кембридже.

"Хотя аналогия часто вводит в заблуждение, это наименьшее из того, что вводит нас в заблуждение",- писал Сэмюэл Батлер в книге "Музыка, картины и книги". Модели - это, конечно, лишь грубая аналогия. Но их несомненное достоинство? подкупающая простота. Самую примитивную из самоделок, подобных тем, что делала Алиса Стотт, может без труда изготовить любой из подручных материалов, например из проволоки. Если рядом с тетраэдром, правильной пирамидой, расположить некую точку так, чтобы она находилась ото всех вершин пирамиды на расстоянии, равном ее ребру, то получится первый из наших политопов - правильный симплекс, речь о котором уже шла, когда мы делали первые свои шаги в четырехмерье. Его можно рассматривать пятью разными способами как пирамиду, у которой любая вершина играет роль "верхней", а остальные четыре определяют основание. Его проекция на плоскость представляет собой уже не раз встречавшийся нам правильный пятиугольник с вписанной в него пентаграммой - всем нам знакомой пятиугольной звездой. Видно, что у симплекса пять вершин, десять ребер, десять "обычных" двумерных граней и пять трехмерных сверхграней - четырехгранных пирамид, слагающих его "тело". В вершине политопа, "верхней вершине", встречаются три тетраэдра, то есть три трехгранные ячейки, в вершинах которых сходятся по три треугольника. Потому и символ Шлефли выглядит однообразно: {3,3,3}.

Другой аналог Платоновых тел - снова наш старый зйакомый гиперкуб, или "тессаракт", или "измерительный политоп". Как куб можно получить, перемещая квадрат по третьему измерению, так и сверхкуб образуется от движения обычного куба вдоль четвертого измерения. В его вершине назначают себе рандеву три обычных куба, а потому его символ {4,3,3}.

Что же касается остальных четырех правильных политопов, то их представить себе еще сложнее. И в самом деле, попробуйте вообразить фигуру, в каждой вершине которой встречаются четыре и даже пять тетраэдров - {3,3,4} и {3,3,5} или три додекаэдра - {5,3,3}. Внимательный глаз обнаружит, глядя на символы Шлефли, что первый из этих политопов взаимен гиперкубу, два последних - друг другу, а симплекс, как и слагающие его тетраэдры, обойден по части взаимности: у него тут полное самообслуживание. Впрочем, эти соображения куда меньше помогут вообразить облик политопов, чем фотографии моделей двух из них - правильного 120-ячейника, имеющего символ Шлефли {5,3,3}, и взаимного ему правильного 600-ячейника с символом, естественно, {3,3,5} (30, 31). Модели эти представляют собой трехмерные фоекции четырехмерных тел и вместе с тем - чудо ювелирной точности и геометрической интуиции. На выставке "Столетие прогресса" в Чикаго они постоянно собирали вокруг себя восхищенных посетителей. Сделал их Поль Дончиян, армянин, родившийся в Америке, ?го прадед был придворным золотых дел мастером у турецкого султана, и среди других его многочисленных родственников в разных странах Востока многие тоже мыли умелыми ремесленниками. Сам Поль Дончиян до тридцати лет управлял завещанной отцом ковровой фабрикой, пока вдруг ему не начали сниться сны пророческого характера. Но Дончиян не сделался ни предсказателем, ни мистиком. Он решил изучить четвертое изменение, поскольку именно оттуда, по распространенному среди спиритов убеждению, и вещали духи. Задача была: свести все вопросы к самым простым, которые смог бы понять любой человек, не имеющий, как и он сам, никакого математического образования.

"Как геометр, напрягший все старанья... таков был я" - в последних строфах, подводя итог своему гигантскому труду, Данте Алигьери этим сравнением решил дать читателю почувствовать, как много сил, воображения и знаний потребовала от него "Божественная комедия". Известно - это подметил еще Галилей, а снова вернулся к этому вопросу П. А. Флоренский в книге "Мнимости в геометрии", вышедшей в 1921 году,- что геометрия Дантова ада - неевклидова. Но она все-таки трехмерная!

Чтобы вторгнуться в четвертое измерение наиболее ощутимым образом, Поль Дончиян стал делать модели четырехмерных тел. Точнее, он спаивал из тонких проволочек объемные проекции этих тел в наше, третье измерение. Видом в плане в профиле ему служили чертежи, полученные геометрами,- например, тот, что создал голландский математик Ван Осе (32). И. Дончиян, как опытный строитель, воссоздавал по ним объемные фигуры. Он не стремился покрывать грани каким-либо материалом - ведь тогда ребра стали бы видимыми только для существ из четвертого измерения. Его модели - это "скелеты" фигур, то, что Леонардо да Винчи на своих рисунках к книге Луки Пачоли обозначил латинским словом "вакуус" - пустой, полый.

"Соединяя части фигуры между собой, приходится постоянно сверяться с известными проекциями на плоскость, но в то же время не забывать о здравом смысле,- писал о своей работе сам П. Дончиян.- К счастью, модели обладают тем, что в технике называется "защитой от дурака": если допущена ошибка, то она сразу видна и дальнейшая работа становится невозможной. Зато последняя операция - соединение друг с другом внешних и внутренних секций - таит в себе нечто от того волнения, что испытывают две группы рабочих, пробивающих туннель с двух разных сторон горы, когда они, наконец, встречаются и видят, что рыли точно по одной прямой".

Но минуты восторга были редкими, а работа требовала воображения, необычайного терпения и кропотливого, тонкого труда. Зато и результаты ее были намного более впечатляющими, чем даже фотографии получившихся моделей,- ведь как ни размести камеру, все равно какие-то из многочисленных ребер обязательно перекроют друг друга.

"Но живут, живут в N измерениях вихри волн, циклоны мыслей, те, кем смешны мы с нашим детским зреньем, с нашим шагом по одной черте",- писал Валерий Брюсов в своем известном стихотворении "Мир N измерений". И если сегодня удается несколько "приоткрыть засов", стерегущий наш мир трех координат, наши "высь, ширь и глубь", то заслуга в том не поэтов, а математиков - создателей n-мерной геометрии. Их трудами создано немало ухищрений, с помощью которых случается иной раз проникнуть в многомерность.

"Мы должны создавать бесконечное множество новых миров, законы которых мы сможем постигнуть, хотя нога человека никогда не ступит туда",- писал венгерский математик Ласло Фейеш Тот. Мы должны создавать эти миры хотя бы уже потому, что, как считал Николай Иванович Лобачевский, даже самая абстрактная математика когда-нибудь обязательно найдет себе применение. Политопы, порождения изящнейших построений геометрического ума, воспарившего к высшим измерениям, уже с лихвой отработали затраченные на них усилия человечества. Они исправно трудятся в теории связи и линейном программировании - практичнейших из практичных науках. Отточенный из них математический аппарат, накопленный опыт и интуиция служат, когда надо выбирать наибыстрейший способ соединения двух абонентов или самый короткий маршрут, или наилучшую загрузку оборудования,- и вообще во всех случаях, когда решается задача со многими связанными друг с другом неизвестными, которые можно представить как элементы многомерного политопа.

"Математика содержит в себе черты волевой деятельности, умозрительного рассуждения и стремления к эстетическому совершенству",- считал Рихард Курант, известный ученый, ныне покойный, бывший иностранным членом нашей Академии наук. Не одна лишь необычная страсть Поля Дончияна говорит о верности этой мысли, таких свидетельств много. Вот одно из последних. Авторское свидетельство, выданное советским изобретателям В. В. Тишину и В. П. Леонову, называется прозаично - "Строительный элемент". Но, быть может, оно несет революцию в строительное дело. В самом деле, вместо огромного количества (сейчас их около трех тысяч) деталей, из которых сегодня собирают здания, предлагается всего два элемента: плита и рама, которые, по сути, представляют собой одну деталь, только рама - полая, а плита - сплошная. Из них получаются и стены, и крыши, и фундамент, и межэтажные перекрытия. Мало того, здание можно потом разобрать, и все его детали использовать в другой стройке - не обязательно даже дома, а, например, взлетно-посадочной полосе на аэродроме.

Музыка сфер (30)
Музыка сфер (30)

Но как же будет стоять дом без "коробки" - железобетонного скелета, который глаз привык видеть на новостройке? Идея родилась у Василия Платоновича Леонова, когда он еще был студентом мехмата МГУ и изучал кристаллографию. Кристаллы ведь тоже сами себе служат каркасом и могут притом расти в любую сторону. Конечно, это было лишь "умозрительное рассуждение", вызванное "стремлением к эстетическому совершенству". Прошло много лет, понадобилась огромная "волевая деятельность" и самого Леонова, и его соавтора архитектора В. В. Тишина, и вмешательство нашей прессы, чтобы авторское свидетельство, заявка на которое была послана еще в 1963 году, было наконец выдано. Тому способствовало и то, что за эти семь лет на Западе возникло целое направление в строительстве и архитектуре, названное "Организация пространства". Его творцы - испанские архитекторы А. Карильо и М. Ориоль и американский профессор К. Воксман. Один из основных выводов создателей новой науки полностью совпадает с идеей Леонова и Тишина. А именно: есть лишь один способ заставить здание расти, как кристалл, в любом направлении и при этом строить его из одинаковых деталей. Для этого надо, чтобы детали эти по всему своему периметру имели паз, в который мог бы войти выступ от другой такой же детали. Но ведь это невероятно сложно - окружить деталь одновременно и выступом, и соответствующей ему впадиной... Или же это невероятно просто! Придуманная Леоновым и Тишиным конструкция решает эту проблему. Да, это всего-навсего плита, два слоя которой сдвинуты друг относительно друга по диагонали так, что получается гребень. Соединяя такие элементы друг с другом, можно строить все что угодно, например, фигуру, собранную из рам - полых плит, идущих на оконные и дверные проемы, внутренние перегородки, и вообще во всех случаях, когда стена не должна быть сплошной (33). Конечно, из таких же деталей лучше собирать не абстрактные конструкции, а вполне конкретные здания. Их каркас получается сам по себе, он просто следствие особой геометрии плиты.

Музыка сфер (31)
Музыка сфер (31)

Монтаж "коробки" благодаря одинаковости всех деталей и их соединений убыстряется в четыре-пять раз, его можно без труда автоматизировать, плиты и рамы Леонова-Тишина легки в изготовлении, их удается многократно использовать при реконструкции зданий, да мало ли еще полновесной прибыли несет людям "волевая деятельность", связанная со "стремлением к эстетическому совершенству". А ведь это только один из множества примеров плодотворного вторжения математической мысли в наиболее, казалось бы, изученные области нашей жизни...

"В голове архимеда было больше воображения, чем в голове гомера",- говорил насмешливый Вольтер. Восхваления, которые можно произнести в адрес всей математики, трижды верны по отношению к геометрии. Ибо она, доступная живому созерцанию, выковывает и архимедов и гомеров.

Правильные многогранники существовали на Земле задолго до появления на ней человека - кубы поваренной соли, тетраэдры сурьмянистого сернокислого натрия, октаэдры хромовых квасцов, икосаэдры бора и додекаэдры радиолярий, микроскопических морских организмов... Но только геометр усмотрел в них порядок и систему задолго до того, как физик проник в тайну строения вещества. Геометрия С ее прозрачной логикой, с четкостью ее построений позволяет увидеть первоосновы вещей.

Музыка сфер (32)
Музыка сфер (32)

Именно увидеть!

"Радость видеть и понимать есть самый прекрасный дар природы",- говорил Эйнштейн...

"Наглядная геометрия" - так назвали свою замечательную книгу Давид Гильберт и Стефан Кон-Фоссен. И это не метафора, а сложившееся научное понятие.

"В современной математике употребляется термин "наглядная геометрия". Мы относим к ней те геометрические вопросы и теоремы, которые имеют "наглядный" геометрический смысл. Теория выпуклых фигур, и, в частности, выпуклых многогранников, относится к наглядной геометрии. Ее теоремы имеют обычно элементарную формулировку и яркий геометрический смысл, хотя доказательства часто бывают весьма сложными... Вопросами этой теории занимались математики разных эпох, однако содержание этой теории не только не исчерпано, но, наоборот, в последние десятилетия она послужила темой для выдающихся работ советских геометров".

Музыка сфер (33)
Музыка сфер (33)

Так пишет один из этих геометров - Лазарь Аронович Люстерник в своей в высшей степени интересной книге "Выпуклые фигуры и многогранники". Но не одни лишь чистые геометры отдавали свое время, ум и сердце тем мыслям и образам, что ясно просматриваются сквозь невесомую ткань геометрии.

"Правильных выпуклых многогранников вызывающе мало",- заметил однажды Льюис Кэрролл. Но и этот весьма скромный по численности отрад, великолепная пятерка, сумел глубоко пробиться в самые глубины различных наук. Известный советский геолог профессор Б. Л. Личков, друг и сотрудник академика В. И. Вернадского, написал научный труд "К основам современной теории Земли". Он развил в нем ту точку зрения, весьма популярную среди космологов, что планета наша сформировалась из скопления астероидов. Вначале она отнюдь не напоминала шар - это было некое угловатое образование, несущееся в космосе. Но время и законы физики постепенно превращали Землю в правильные геометрические тела, поскольку именно они обладают особыми геометрическими свойствами, удобными для подобной эволюции. Переходной формой к нынешнему геоиду мог быть, по мнению профессора Личкова, додекаэдр, и части его граней и до сих пор должны сохраниться в теле планеты. По другим соображениям, приведенным в его книге, Земля должна была напоминать октаэдр, и тогда геологам следует, по Личкову, искать именно эти огромные грани.

Другой известный советский ученый, кристаллограф по специальности, профессор И. И. Шафрановский предложил в 1962 году модель Земли в виде двух тетраэдров, соединенных основаниями, а в конце прошлого века Л. Грин и А. Лаппарент уподобляли земной шар тетраэдру в чистом виде. И наконец, снова Платон, его диалог "Федон": "Земля, если взглянуть на нее сверху, похожа на мяч, сшитый из двенадцати кусков кожи".

Один лишь икосаэдр остался не вовлеченным в эти геогеометрические рассуждения, но лишь до недавнего времени. В 1973 году сразу трое ученых - искусствовед Н. В. Гончаров, инженер-электронщик В. А. Макаров и инженер-строитель В. С. Морозов - выдвинули совместную гипотезу, которую они назвали додекаэдро-икосаэдровой.

Они обратили внимание на любопытное совпадение: Мохенджо-Даро, очаг древнейшей индийской культуры, и остров Пасхи, где тоже в отдаленные времена существовала самобытная цивилизация, расположены на концах оси, проходящей через центр Земли. Но несмотря на такую диаметральную географическую противоположность, между ними наблюдается удивительное лингвистическое единство: венгерский ученый Хевеши считает, что среди иероглифов острова Пасхи и Мохенджо-Даро около сотни одинаковых знаков. Вдобавок в знаменитых табличках ронго-ронго упоминается о большом архипелаге, который опустился под воду в районе острова Пасхи, а в Мохенджо-Даро в древности были сильные колебания почвы.

Эти не лишенные интереса (хотя и недостаточно проверенные) факты явились толчком к дальнейшему "обшариванию" планеты в поисках новых знаменательных совпадений. В поле зрения трех молодых исследователей попали египетские пирамиды. Название древней столицы Египта - Мемфиса, где они расположены, переводится как "Середина мира". От Гизы, района пирамид, до Мохенджо-Даро шестнадцать географических градусов, а от Мохенджо-Даро до Северного полюса - ровно вдвое больше. Получается, что пирамиды и в самом деле находятся если не в середине мира, то в центре гигантского равностороннего треугольника.

Следующий шаг на пути авторов додекаэдро-икосаэдровой гипотезы строения Земли был естествен и прост: продолжить стороны гигантского треугольника вдоль земного шара. Мозаика, покрывшая глобус в результате этой работы, состояла ровно из двадцати правильных треугольников. Иными словами, она представляла собою икосаэдр. Соединив середины его граней между собой, Гончаров, Морозов и Макаров получили, естественно, додекаэдр. И тут выяснилось, что вдоль ребер двух замечательных фигур происходят на Земле удивительные явления. Океанические подводные хребты и разломы земной коры расположились строго параллельно ребрам, а часто и просто вдоль них. Впрочем, это обстоятельство мало удивило авторов гипотезы: они были уже знакомы с новым научным направлением, так называемой тектоникой плит. Ее сторонники утверждают, что земная кора состоит из огромных плит, стыки между которыми они называют "швами на бейсбольном мяче планеты". "Земля, если взглянуть на нее сверху..." Откуда мог знать Платон, к каким выводам придет геология через две с половиной тысячи лет после его смерти?

"Лекторы, как известно, делятся на тех, кто говорит "уже Платон и Аристотель...", и тех, кто говорит "еще Платон и Аристотель..." - любит повторять Альберт Макарьевич Молчанов. И ему же, одному из крупнейших в стране специалистов по математическим методам исследования живой природы, директору Вычислительного центра пушкинской группы биологических институтов Академии наук, принадлежит крылатая фраза: "Биосфера многогранна".

Как ни соблазнительно представлять себе земную сферу в виде правильного многогранника, Платонова тела, и какими бы дружескими чувствами к Платону мы ни пылали, истина все-таки дороже. Да, многие залежи полезных ископаемых тянутся вдоль ребер икосаэдро-додекаэдровой сетки. Да, еще более удивительные вещи происходят в местах пересечения этих ребер - тут располагаются и очаги древнейших культур и цивилизаций - Перу, Северная Монголия, Таити, Обская культура, Камбоджа-Вьетнам, Ирландия, где есть памятники постарше египетских пирамид; районы максимума солнечной активности; максимумы и минимумы атмосферного давления; гигантские завихрения течений Мирового океана; шотландское озеро Лох-Несс с знаменитой Несси, скорее всего отсутствующей в нем; остров Сахалин, где обычные растения вытягиваются до невероятной длины,- да, все это странным образом попадает в вершины додекаэдра и икосаэдра. Но и эти и многие другие совпадения (среди них особенно поразительно, что "Бермудский дьявольский треугольник" и "море Дьявола" южнее Японии, где загадочным образом пропадают корабли и самолеты, не успев подать сигнал "SOS",- оба эти проклинаемые мореходами и авиаторами района океана лежат точно в центрах пятиугольных граней додекаэдра) еще не дают оснований для того, чтобы считать гипотезу Гончарова-Макарова-Морозова научной теорией. Строгих ее доказательств пока нет, и будут ли они - неизвестно.

"Заблуждения, заключающие в себе некоторую долю правды, самые опасные" - Адам Смит хорошо разбирался не только в политической экономии, но и в жизни вообще. Увы, остроумная геогеометрическая гипотеза открыта для критики почти со всех своих тридцати двух сторон. Но... но ведь и Кеплер пришел к своим законам движения планет не сразу, а пройдя через искусы поисков гармонии и красоты, воплощенных во всех тех же Платоновых телах. Есть что-то неотразимое в этих фигурах для людей определенного склада ума - для тех, чей внутренний взор устремлен к первоосновам мира. "... Я сделал тетраэдр, додекаэдр и еще два эдра, для которых не знаю правильного названия",- писал своему отцу Джеймс Клерк Максвелл, и эти слова знаменуют собой, быть может, рождение в ничем пока не примечательном английском мальчике великого ученого, физика, по складу своего мышления оставшегося геометром. "Джеймс покидает пору своего отрочества с картонными многогранниками в руках",- комментирует этот момент его советский биограф Владимир Петрович Карцев. И с любовью к геометрической строгости и целесообразности в сердце - так и просится добавить.

Это чувство, для которого нет, вероятно, правильного названия, способно овладеть людьми вне зависимости от их возраста, профессии или гражданства.

Химиков еще в начале нашего века увлекла идея создать соединения, в которых молекулы держатся друг за друга без всякой химической связи, исключительно благодаря тому, что они продеты одна сквозь другую как кольца - наподобие той фигуры, что определяет собой структуру этой книги. Для таких антихимических монстров придумали даже название - катенаны (от латинского "катена" - цепь), но лишь в середине шестидесятых годов Г. Шилл и А. Люттрингауз после десятилетней упорной работы и многих тысяч неудачных опытов сумели наконец получить первый катенан. Синтез его состоял из нескольких десятков стадий, и лишь на последней из них разрывалась последняя химическая связь, и кольца оставались соединенными чисто механически. Однако понадобилось еще создать метод доказательства, что все на самом деле обстоит именно таким образом: кольца продеты одно в другое, но химически ничем не связаны. Его предложил Рэмир Григорьевич Костяновский, доктор химических наук. Он придумал, как применить в этом случае масс-спектральный анализ. Все эти сложные и сложнейшие приемы и методы долгим и тернистым путем вели к получению катенана, состоявшего всего из двух сцепленных колец. Но не прошло и десяти лет, как ту же конструкцию химики получили совсем иным путем. Они использовали удивительные свойства нашего старинного знакомого - листа Мёбиуса. Цирковые фокусы, при которых разрезанное кольцо превращается в два сцепленных между собой, заменили собой точнейшую аппаратуру.

Но и тут не конец геометрическому вторжению в жизнь живой и неживой материи. Ведь если полоску бумаги - или длинную молекулу - повернуть перед склеиванием не на один и не на два, а на три оборота, то, разрезав ее, мы получим трилистник - такой, какие изображены на гравюрах Эсхера "Узлы". Особенно интересен левый верхний узел ("Узлы. 1965): про него не просто сказать, что это - односторонняя лента дважды, да еще вдобавок самопересекаясь обегает узел-трилистник или же два независимо существующих листа Мёбиуса?

"Теория узлов, одна из самых старых частей алгебраической топологии, принадлежит к числу тех разделов математики, где ставить "естественные" вопросы гораздо легче, чем отвечать на них. Поэтому, несмотря на то, что ею занимаются многие математики уже почти девяносто лет, полученные в ней результаты довольно скромны и многие основные проблемы все еще ждут своего решения. Особенно парадоксально то, что в теории узлов зачастую проблемы многомерной топологии решаются гораздо легче, чем аналогичные им проблемы в обычном трехмерном пространстве",- написано в предисловии к книге Ричарда Кроуэлла и Ральфа Фокса "Введение в теорию узлов". А сами авторы начинают ее такими словами: "Теория узлов представляет собой часть геометрии, привлекательную тем, что изучаемые в ней объекты можно воспринимать и осмысливать в обычном физическом мире. Она - место стыка таких разных разделов математики, как теория групп, теория матриц, теория чисел, алгебраическая и дифференциальная геометрия (мы называем лишь наиболее важные разделы). Ее истоки лежат в математической теории электричества и элементарной атомной физике, а недавно наметилась возможность ее новых приложений в некоторых областях химии".

Таким образом, узлы - не только предмет исследования для топологов, "деталь" первой необходимости для такелажников и моряков и обязательный "инвентарь" для фокусников-спиритов вроде Генри Слейда. Они еще оказались в фокусе внимания химиков и даже медиков. Сейчас сразу несколько групп исследователей в разных странах работают над тем, чтобы создать искусственным путем заузленные молекулы. В числе прочих, разумеется, проверяется и "мёбиусный" путь. Усилия ученых подогреваются тем недавно открытым фактом, что в клетках, пораженных раком, резко повышено содержание катенановых - "скольцованных" - молекул ДНК. Советским ученым посчастливилось обнаружить заузленную молекулу РНК. Встречаются в живой ткани и иные топологические диковинки. Все это говорит об одном: возможно, многие проблемы медицины и биохимии будут когда-нибудь решены благодаря геометрическому образу мышления, такому, какой был, например, у Джеймса Клерка Максвелла.

Пока же подход этот успешно реализуется в более "практичных" областях. Р. Г. Костяновский полагает, например, что молекулы ряда полимеров могут образовывать переплетающиеся между собой кольца. Эластичность такого вещества перекроет все мыслимые рекорды: оно будет растягиваться во многие тысячи раз и не рваться при этом. А вот один из последних примеров уже осуществленного "практически-геометрического" решения - авторское свидетельство, выданное В. С. Кравченко и В. А. Ткачеву: "Рабочий орган культиватора-плоскореза, включающий стойку, в нижней части которой укреплена стрельчатая лапа, отличающийся тем, что, с целью обеспечения самоочистки стойки от растительных остатков, последняя в нижней своей части изогнута по форме поверхности Мёбиуса".

...Нет, есть все-таки нечто бесконечно привлекательное в геометрии...

"Искусство - это я, наука - это мы",- было сказано Виктором Гюго в то время, когда еще и в помине не было ни многолюдных исследовательских институтов и центров вроде Объединенного института ядерных исследований в Дубне, ни гигантских ускорителей элементарных частиц, сравнимых разве что с промышленными предприятиями, когда коллективный и интернациональный характер научной деятельности был далеко не очевидным. Однако и во времена Гюго с относительно узким кругом геометрических проблем было связано довольно много имен. Вероятно, геометрия как наука изначально обладает свойством, отвечающим за странное на первый взгляд переплетение интересов и склонностей, которое с удивлением отмечает про себя всякий, кто пытается проследить за ростом различных ветвей геометрического дерева. Свойство это в том, что в ней самой все хитро переплетено.

Хоппе, немецкий математик, которому суждено было решить спор между Ньютоном и Грегори о тринадцати шарах, занялся впоследствии многомерными многогранниками. Мёбиус не только придумал свою прославленную топологическую игрушку, но и написал работу "Барицентрическое исчисление", где речь шла о четвертом измерении. А те, кого волнует красота многогранников, не смогут оторваться от еще одной математической забавы - калейдоскопа, составленного из сферических треугольников Мёбиуса, в котором любая точка рождает некий многогранник. Анри Пуанкаре не только подготовил почву для теории относительности Эйнштейна, изменившей наши представления о геометрии мира, но еще например, знаменитейшую "истинно топологическую" формулу Эйлера для вершин, ребер и граней многогранников преобразовал таким образом, что она стала применима для пространств любого числа измерений.

Таких примеров множество. Вся эта небольшая книга, по сути дела, тому иллюстрация. Как и иллюстрации к ней самой, взятые из альбома художника, сумевшего проникнуться геометрическим видением мира. И чтобы сделать расставание приятным, взгляните напоследок на гравюры Эсхера "Волшебное зеркало", "Всадники", "Другой мир", "Кубическое пространство", "Все меньше и меньше. I", "Вавилонская башня" и "Картинная галерея". Вы увидите, как зеркальность мира сочетается с проблемой плоского и пространственного, а мёбиусианские мотивы - с мозаиками, еще раз защемит сердце при мысли о безграничности нашей расширяющейся - или сжимающейся?- Вселенной и, быть может, вдруг станет почти ощутимой идея о ее замкнутости. И тогда в вас проснется на миг никогда не умирающий Вечный Геометр, наивно и мудро взирающий на окружающее его со всех сторон движение сфер, и, прислушиваясь к вавилонскому многоязычию современной науки, вы сумеете уловить Главные Слова.

Музыка сфер
Музыка сфер

Предмет математики настолько серьезен, 
что полезно не упускать случая 
сделать его немного занимательным.

Блез Паскаль

предыдущая главасодержаниеследующая глава




ИНТЕРЕСНО:

Многомерный математический мир… в вашей голове

В школах Великобритании введут китайские учебники математики

Найдено самое длинное простое число Мерсенна, состоящее из 22 миллионов цифр

Как математик помог биологам совершить важное открытие

Математические модели помогут хирургам

Почему в математике чаще преуспевают юноши

Физики-практики откровенно не любят математику

В индийской рукописи нашли первое в истории упоминание ноля

Вавилонская глиняная табличка оказалась древнейшей «тригонометрической таблицей» в мире

Ученые рассказали о важной роли игр с пальцами в обучении детей математике
Пользовательского поиска

© Злыгостев Алексей Сергеевич, статьи, подборка материалов, оформление, разработка ПО 2001-2017
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'MathemLib.ru: Математическая библиотека'
Рейтинг@Mail.ru