НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    БИОГРАФИИ    КАРТА САЙТА    ССЫЛКИ    О ПРОЕКТЕ  

предыдущая главасодержаниеследующая глава

Пожиратели числовых исполинов

В заключение остановимся на арифметическом (вернее, пожалуй, геометрическом) великане особого рода - на кубической миле; мы имеем в виду географическую милю, составляющую 15-ю долю экваториального градуса и заключающую 7420 м. С кубическими мерами воображение наше справляется довольно слабо; мы обычно значительно преуменьшаем их величину, особенно для крупных единиц, с которыми приходится иметь дело в астрономии. Но если мы превратно представляем себе уже кубическую милю - самую большую из наших объемных мер,- то как ошибочны должны быть наши представления об объеме земного шара, других планет, Солнца! Стоит поэтому уделить немного времени и внимания, чтобы постараться приобрести более соответствующее представление о кубической миле.

В дальнейшем воспользуемся картинным изложением одного талантливого популяризатора:

"Положим, что по прямому шоссе мы можем видеть на целую географическую милю вперед. Сделаем мачту длиной в милю и поставим ее на одном конце дороги, у верстового столба. Теперь взглянем вверх и посмотрим, как высока наша мачта. Положим, что возле этой мачты стоит одинаковой с ней высоты человеческая статуя более 7 км высоты. В такой статуе колено будет находиться на высоте 1800 м; нужно было бы взгромоздить одну на другую 25 египетских пирамид, чтобы достигнуть до поясницы статуи!

Вообразим теперь, что мы поставили две такие мачты, вышиной в милю, на расстоянии мили одна от другой и соединили обе мачты досками; получилась бы стена в милю длины и милю вышины. Это квадратная миля.

Мы имеем деревянную стену, стоящую отвесно. Представим себе еще четыре подобные стены, сколоченные вместе, как ящик. Сверху прикроем его крышкой в милю длины и милю ширины. Ящик этот займет объем кубической мили. Посмотрим теперь, как он велик, то-есть что и сколько в нем может поместиться.

Начнем с того, что, сняв крышку, бросим в ящик все здания Ленинграда. Они займут там очень немного места. Отправимся в Москву и по дороге захватим все крупные и мелкие города. Но так как все это покрыло только дно ящика, то для заполнения его поищем материалов в другом месте. Возьмем Париж со всеми его триумфальными воротами, колоннами, башней и бросим туда же. Все это летит, как в пропасть; прибавка едва заметна. Прибавим Лондон, Вену, Берлин. Но так как всего этого мало, чтобы хоть сколько-нибудь заполнить пустоту в ящике, то станем бросать туда без разбора все города, крепости, замки, деревни, отдельные здания. Все-таки мало! Бросим туда все, что только сделано руками человека в Европе; но ящик едва наполняется до одной четверти. Прибавим все корабли мира; и это мало помогает. Бросим в ящик все египетские пирамиды, все рельсы Старого и Нового Света, все машины и фабрики мира - все, что сделано людьми в Азии, Африке, Америке, Австралии. Ящик заполняется едва до половины. Встряхнем его, чтобы в нем улеглось ровнее, и попробуем, нельзя ли дополнить его. Если бы мы пожелали поместить в ящике весь живой мир: всех лошадей, быков, ослов, мулов, баранов, верблюдов, на них наложить всех птиц, рыб, змей - все, что летает и ползает, - то и тогда не наполнили бы ящика доверху без помощи скал и песку.

Такова кубическая миля. А из земного шара можно сделать 660 миллионов подобных ящиков! При всем почтении к кубической миле, к земному шару приходится питать еще большее уважение".

К сказанному прибавим еще от себя, что кубическая миля пшеничных зерен насчитывала бы их несколько триллионов. Как видите, этот кубический исполин - настоящий пожиратель других исполинов.

Весьма внушительную вместимость имеет и кубический километр.

Нетрудно подсчитать, что ящик в 1 куб. км мог бы вместить 5000 биллионов спичек, вплотную уложенных; для изготовления такого количества спичек фабрика, выпускающая миллион спичек в сутки, должна была бы работать 14 миллионов лет; а чтобы такое число спичек доставить, потребовалось бы 10 миллионов вагонов - поезд длиной в миллион километров, в 2 1/2 раза длиннее земного экватора.

предыдущая главасодержаниеследующая глава











© MATHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'Математическая библиотека'
Рейтинг@Mail.ru