Новости    Библиотека    Энциклопедия    Биографии    Карта сайта    Ссылки    О проекте




предыдущая главасодержаниеследующая глава

Тремя двойками

Всем, вероятно, известно, как следует написать три цифры, чтобы изобразить ими возможно большее число. Надо взять три девятки и расположить их так:

999,

т. е. написать третью "сверхстепень" от 9.

Число это столь чудовищно велико, что никакие сравнения не помогают уяснить себе его грандиозность. Число электронов видимой вселенной ничтожно по сравнению с ним. В моей "Занимательной арифметике" (гл. X) уже говорилось об этом. Возвращаюсь к этой задаче лишь потому, что хочу предложить здесь по ее образцу другую:

Тремя двойками, не употребляя знаков действий, написать возможно большее число.

Решение

Под свежим впечатлением трехъярусного расположения девяток вы, вероятно, готовы дать и двойкам такое же расположение:

222.

Однако на этот раз ожидаемого эффекта не получается. Написанное число невелико - меньше даже, чем 222. В самом деле: ведь мы написали всего лишь 24, т. е. 16.

Подлинно наибольшее число из трех двоек - не 222 и не 222 (т. е. 484), а

222 = 4194304.

Пример очень поучителен. Он показывает, что в математике опасно поступать по аналогии; она легко может повести к ошибочным заключениям.

предыдущая главасодержаниеследующая глава




ИНТЕРЕСНО:

Многомерный математический мир… в вашей голове

В школах Великобритании введут китайские учебники математики

Найдено самое длинное простое число Мерсенна, состоящее из 22 миллионов цифр

Как математик помог биологам совершить важное открытие

Математические модели помогут хирургам

Почему в математике чаще преуспевают юноши

Физики-практики откровенно не любят математику

В индийской рукописи нашли первое в истории упоминание ноля

Вавилонская глиняная табличка оказалась древнейшей «тригонометрической таблицей» в мире

Ученые рассказали о важной роли игр с пальцами в обучении детей математике
Пользовательского поиска

© Злыгостев Алексей Сергеевич, статьи, подборка материалов, оформление, разработка ПО 2001-2018
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'MathemLib.ru: Математическая библиотека'
Рейтинг@Mail.ru