![]() |
ГЕОДЕЗИЧЕСКИХ ГИПОТЕЗАГЕОДЕЗИЧЕСКИХ ГИПОТЕЗА - утверждение, определяющее движение пробной свободной частицы в теории гравитации Эйнштейна (т. е. в общей теории относительности). В ньютоновской физике частица наз. свободной, если на нее не действуют никакие силы (в том числе и гравитационные). В общей теории относительности понятие силы гравитации как четырехмерного вектора отсутствует и гравитационные свойства определяются римановой структурой пространства-времени. Соответственно, в общей теории относительности движение частицы в гравитационном поле (но без влияния каких-либо негравитационных сил) рассматривается как свободное. Точная формулировка Г. г. такова: мировая линия пробной свободной частицы с ненулевой массой покоя является неизотропной геодезической пространства-времени; мировая линия пробной свободной частицы с нулевой массой покоя (фотон, нейтрино) является изотопной геодезической пространства-времени. Г. г. является естественным обобщением закона инерции классической механики. Дифференциальные уравнения геодезических (см. Геодезическая линия) являются уравнениями движения в общей теории относительности. Входящее в формулировку Г. г. понятие пробной частицы означает, что не рассматриваются эффекты, связанные с конечными размерами частиц и их внутренним строением, а создаваемое частицей гравитационное поле считается пренебрежимо малым. Пробная частица является идеализированным, предельным случаем реальной частицы, и в весьма широком и естественном классе способов совершения этого предельного перехода удается получить Г. г. как следствие уравнений Эйнштейна [3]. Это обстоятельство существенно отличает общую теорию относительности от всех предшествовавших полевых физич. теорий, в к-рых, по-видимому, уравнения движения принципиально не могут быть получены из уравнений поля. Лит.: [1] Фок В. А., Теория пространства, времени и тяготения, 2 изд., М., 1961, гл. 6; [2] Синг Дж.-Л., Общая теория относительности, пер. с англ., М., 1963, гл. 3; [3] Эйнштейн А., Работы по теории относительности, Собр. научн. трудов, т. 2, М., 1966, № 117. Д. Д. Соколов. Источники:
|
![]()
|
|||
![]() |
|||||
© MATHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить ссылку на страницу источник: http://mathemlib.ru/ 'Математическая библиотека' |