![]() |
ГАМИЛЬТОНА УРАВНЕНИЯГАМИЛЬТОНА УРАВНЕНИЯ - канонические обыкновенные дифференциальные уравнения 1-го порядка, описывающие движения голономных механич. систем под действием приложенных к ним сил, а также экстремали задач классического вариационного исчисления. Г. у., установленные У. Гамильтоном [1], эквивалентны Лагранжа уравнениям 2-го рода (или Эйлера уравнениям в классическом вариационном исчислении), в к-рых неизвестными являются обобщенные координаты qi, а также и q̇i = dqi/dt. Вместо обобщенных скоростей q̇i У. Гамильтон ввел в рассмотрение обобщенные импульсы pi = ∂L/∂q̇i, i = 1, ..., n, (1) где L(qi, q̇i, t) - Лагранжа функция, n - число степеней свободы системы, и определил функцию ![]() (2) наз. ныне Гамильтона функцией. В правой части (2) переменные q̇i заменяются их выражениями q̇i = φi(qs, ps, t) получаемыми разрешением уравнений (1). Для динамич. систем, у к-рых ![]() такое разрешение всегда возможно. Г. у. имеют вид канонич. уравнений ![]() Здесь Q*i обозначают непотенциальные обобщенные силы, если они действуют на систему. Число уравнений (3) равно числу 2n неизвестных qi, рi. Порядок системы (3) как и системы уравнений Лагранжа 2-го рода, равен 2n. Переход от переменных qi, q̇i, t и функции Лагранжа L к переменным qi, рi, t и функции Гамильтона H, согласно формулам (1) и (2), представляет собой Лежандра преобразование. Г. у. имеют определенные преимущества по сравнению с уравнениями Лагранжа, что обусловило их большую роль в аналитич. механике. См. также Гамильтонова система. Лит.: [1] Hamilton W. R., «Philos. Trans. Roy. Soc. London», 1835, pt 1, p. 95-144. В. В. Румянцев. Источники:
|
![]()
|
|||
![]() |
|||||
© MATHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить ссылку на страницу источник: http://mathemlib.ru/ 'Математическая библиотека' |