НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    БИОГРАФИИ    КАРТА САЙТА    ССЫЛКИ    О ПРОЕКТЕ  

ВЕРХНИЙ И НИЖНИЙ ПРЕДЕЛЫ

ВЕРХНИЙ И НИЖНИЙ ПРЕДЕЛЫ - 1) В. и н. п. последовательности - наибольший, и соответственно, наименьший, предел среди всех частичных пределов (конечных и бесконечных) данной последовательности действительных чисел. Для любой последовательности действительных чисел хn, n = 1, 2, ..., множество всех ее частичных пределов (конечных и бесконечных) на расширенной числовой прямой (т. е. в множестве действительных чисел, пополненном символами - ∞ и +∞) не пусто и имеет как наибольший, так и наименьший элементы (конечный или бесконечный). Наибольший элемент множества частичных пределов наз. верхним пределом (в. п.) последовательности и обозначается

наименьший элемент - нижним пределом (н. п.) и обозначается

Напр., если

хn = (-1)n,

то

если

хn = (-1)nn,

то

если

хn = n + (-1)nn,

то

У всякой последовательности существует в. п. (н. п.), при этом, если последовательность ограничена сверху (снизу), то ее в. п. (н. п.) конечен. Для того чтобы число а было в. п. (соответственно н. п.) последовательности хn, n = 1, 2, ..., необходимо и достаточно, чтобы для любого ε > 0 выполнялись условия: а) существует такой номер nε, что для всех номеров n ≥ nε справедливо неравенство хn < а + ε (хn > а - ε); б) для любого номера n0 существует такой номер n' = n'(ε, n0), что n' > n0 и хn' > а - ε (хn' < а + ε). Условие а) означает существование при любом фиксированном ε > 0 в последовательности {хn} лишь конечного числа таких членов хn, что хn > а + ε(хn < а - ε). Условие б) означает существование бесконечного множества таких членов хn, что хn > а - ε(хn < а + ε). Понятие н. п. сводится к понятию в. п. с помощью изменения знака у членов последовательности:

Для того чтобы последовательность хn, n = 1, 2, ..., имела предел (конечный или бесконечный, равный одному из символов - ∞ или +∞), необходимо и достаточно, чтобы

2) В. п. (н. п.) функции f(x) в точке x0 предел верхних (нижних) граней множеств значений функции f(x) в окрестности точки х0, когда эти окрестности стягиваются к точке х0. Он обозначается

Пусть функция f(x) определена на метрич. пространстве R и принимает действительные значения на R. Если x0 ∈ R и О(х0; ε) есть ε-окрестность точки х0, ε > 0, то

соответственно

В каждой точке x ∈ R у функции f(x) существуют как в. п. f̄(x), так и н. п. f̠(x) (конечные или бесконечные). Функция f̄(x) полунепрерывна сверху, а функция f̠(x) полунепрерывна снизу на пространстве R (в смысле понятия полунепрерывности функций, принимающих значения из расширенной числовой прямой).

Для того чтобы функция f(x) в точке х0 имела предел (конечный или бесконечный, равный одному из символов +∞ или -∞), необходимо и достаточно, чтобы

Естественным образом понятие в. п. (н. п.) функции в точке переносится на действительные функции, определенные на топологич. пространствах.

3) В. п. (н. н.) последовательности множеств Аn, n = 1, 2, ... , множество

состоящее из таких элементов х, к-рые принадлежат бесконечному числу множеств Аn; соответственно, множество

таких элементов х, к-рые принадлежат всем множествам Аn, начиная с нек-рого номера n = n(х). Очевидно, А̠ ⊂ А̄.

Лит.: [1] Ильин В. А., Позняк Э. Г., Основы математического анализа, 3 изд., т. 1, М., 1971; [2] Колмогоров А. Н., Фомин С. В., Элементы теории функции и функционального анализа, 4 изд., М., 1976; [3] Кудрявцев Л. Д., Математический анализ, 2 изд., т. 1, М., 1973: [4] Никольский С. М., Курс математического анализа, т 1, М., 1973; [5] Хаусдорф Ф., Теория множеств, пер. с нем., М., 1937.

Л. Д. Кудрявцев.


Источники:

  1. Математическая Энциклопедия. Т. 1 (А - Г). Ред. коллегия: И. М. Виноградов (глав ред) [и др.] - М., «Советская Энциклопедия», 1977, 1152 стб. с илл.











© MATHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'Математическая библиотека'
Рейтинг@Mail.ru