НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    БИОГРАФИИ    КАРТА САЙТА    ССЫЛКИ    О ПРОЕКТЕ  

ВАН ДЕР ПОЛЯ УРАВНЕНИЕ

ВАН ДЕР ПОЛЯ УРАВНЕНИЕ - нелинейное обыкновенное дифференциальное уравнение 2-го порядка

(1)

Является важным частным случаем Льенара уравнения. В. д. П. у. описывает свободные автоколебания одной из простейших нелинейных колебательных систем (осциллятора Ван дер Поля). В частности, уравнение (1) служит математич. моделью (при ряде упрощающих предположений) лампового генератора на триоде в случае кубич. характеристики лампы. Характер решений уравнения (1) был впервые подробно изучен Б. Ван дер Полем (см. [1]).

Уравнение (1) эквивалентно системе двух уравнений относительно фазовых переменных х, v:

(2)

Иногда вместо х удобнее ввести переменную z (t) = ∫t0 х (τ) dτ; тогда уравнение (1) приведется к уравнению

являющемуся частным случаем Рэлея уравнения. Если вместе с переменной х рассмотреть переменную , ввести новое время τ = i/μ и положить

ε = μ2, то вместо уравнения (1) получим систему

(3)

При любом μ > 0 в фазовой плоскости системы (2) существует единственный устойчивый предельный цикл, к к-рому при t → ∞ приближаются все остальные траектории (кроме положения равновесия в начале координат); этот предельный цикл адекватен автоколебаниям осциллятора Ван дер Поля (см. [2]-[4]).

При малых μ автоколебания осциллятора (1) близки к простым гармоническим колебаниям (см. Нелинейные колебания) с периодом 2π и с определенной амплитудой. Для вычисления колебательного процесса с большей точностью применяются асимптотич. методы. При возрастании μ автоколебания осциллятора (1) все более отклоняются от гармонич. колебаний. При больших μ уравнение (1) описывает релаксационные колебания с периодом (в первом приближении) 1,614 μ. Известны более точные асимптотич. разложения величин, характеризующих релаксационные колебания (см. [5]); изучение этих колебаний равносильно исследованию решений системы (3) с малым параметром ε при производной (см. [6]).

Уравнение

описывает поведение осциллятора Ван дер Поля под воздействием внешнего периодич. возмущения. Здесь наиболее важны изучение явления захватывания частоты (существования периодич. колебаний) и исследование биений (возможности почти периодич. колебаний; см. [2], [4]).

Лит.: [1] Van der Рol В., «Phil. Mag.», 1922, ser. 6, v. 43, p. 700-19; 1926, ser. 7, v. 2, p. 978-92; [2] Андронов А. А., Витт A. A., Xайкин С. Э., Теория колебаний, 2 изд., М., 1959; [3] Лефшец C., Геометрическая теория дифференциальных уравнений, пер. с англ., М., 1961; [4] Стокер Дж., Нелинейные колебания в механических и электрических системах, пер. с англ., 2 изд., М., 1953; [5] Дородницын А. А., «Прикл. матем. и механика», 1947, т. 11, с. 313-28; [6] Мищенко Е. Ф., Розов Н. X., Дифференциальные уравнения с малым параметром и релаксационные колебания, М., 1975.

Н. X. Розов.


Источники:

  1. Математическая Энциклопедия. Т. 1 (А - Г). Ред. коллегия: И. М. Виноградов (глав ред) [и др.] - М., «Советская Энциклопедия», 1977, 1152 стб. с илл.











© MATHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'Математическая библиотека'
Рейтинг@Mail.ru