НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    БИОГРАФИИ    КАРТА САЙТА    ССЫЛКИ    О ПРОЕКТЕ  

БОЛЬЦАНО-ВЕЙЕРШТРАССА ПРИНЦИП ВЫБOPA

Расстановка ударений: БОЛЬЦА`НО-ВЕЙЕРШТРА`ССА ПРИ`НЦИП ВЫ`БOPA

БОЛЬЦАНО-ВЕЙЕРШТРАССА ПРИНЦИП ВЫБOPA - метод доказательства, часто применяемый в математич. анализе и основанный на последовательном делении отрезка пополам и выборе из двух получившихся отрезков отрезка, обладающего нек-рым свойством. Этот метод может быть применен, если свойство отрезков таково, что из наличия свойства у нек-рого отрезка вытекает его наличие по крайней мере у одного из отрезков, получающихся делением пополам исходного. Напр., если на отрезке находится бесконечно много точек к.-л. множества, или если нек-рая функция неограничена на отрезке, или если не обращающаяся в нуль функция принимает на концах отрезка значения разного знака, то все это - свойства указанного типа. Применяя Б.-В. п. в., можно доказать Болъцано-Вейерштрасса теорему и ряд других теорем анализа.

В зависимости от признака, по к-рому производится выбор отрезков при применении Б.-В. п. в., получается либо эффективный процесс, либо неэффективный. Примером первого случая является применение Б.-В. п. в. к доказательству существования у непрерывной действительной функции, принимающей на концах нек-рого отрезка значения разного знака, точки на этом отрезке, в к-рой она обращается в нуль (см. Коши теорема о промежуточных значениях непрерывной функции). В этом случае признаком, по к-рому производится последовательный выбор отрезков, является наличие у функции значений разных знаков на концах выбираемых отрезков. Если имеется способ вычисления функции в каждой точке, то в результате достаточно большого числа шагов можно получить координату точки, в к-рой функция на рассматриваемом отрезке обращается в нуль, с любой наперед заданной точностью. Таким образом, в этом случае одновременно с доказательством существования корня уравнения f(x) = 0 на отрезке, на концах к-рого функция f принимает значения разных знаков, дается и метод приближенного решения этого уравнения. Примером второго случая является доказательство с помощью Б.-В. п. в. теоремы о достижимости действительной непрерывной на отрезке функцией ее верхней грани. Здесь при последовательном делении отрезков пополам выбирается тот отрезок, на к-ром верхняя грань значений функции не меньше, чем на втором. Если, как и в первом случае, известен способ вычисления функции в каждой точке, то этого недостаточно для эффективного выбора нужного отрезка. Поэтому в этом случае с помощью Б.-В. п. в. можно лишь доказать теорему существования, утверждающую, что рассматриваемая функция принимает в нек-рой точке свое наибольшее значение, а не получить метод для приближенного отыскания с наперед заданной точностью этой точки.

Имеются различные обобщения Б.-В. п. в., напр. на случай n-мерного евклидова пространства (n = 2, 3,...) применительно к n-мерным кубам при последовательном их делении на конгруэнтные кубы с ребрами, вдвое меньшими ребер исходного куба.

Л. Д. Кудрявцев.


Источники:

  1. Математическая Энциклопедия. Т. 1 (А - Г). Ред. коллегия: И. М. Виноградов (глав ред) [и др.] - М., «Советская Энциклопедия», 1977, 1152 стб. с илл.











© MATHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'Математическая библиотека'
Рейтинг@Mail.ru