НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    БИОГРАФИИ    КАРТА САЙТА    ССЫЛКИ    О ПРОЕКТЕ  

БЕЗУ ТЕОРЕМА

Расстановка ударений: БЕЗУ` ТЕОРЕ`МА

БЕЗУ ТЕОРЕМА - 1) Б. т. о делении многочлена на линейный двучлен: остаток от деления многочлена

f(x) = a0 xn + ... + an

на двучлен х - а равен f(a). Предполагается, что коэффициенты многочленов содержатся в нек-ром коммутативном кольце с единицей (напр., в поле действительных или комплексных чисел). Следствие Б. т. : число α является корнем многочлена f(x) тогда и только тогда, когда f(x) делится без остатка на двучлен х - α.

2) Б. т. для системы однородных уравнений: если система n однородных уравнений от n + 1 неизвестных

fi (x0, ..., xn) = 0, i = 1, 2, ..., n, (*)

обладает лишь конечным числом непропорциональных ненулевых решений в алгебраически замкнутом поле, содержащем коэффициенты системы, то число этих решений с учетом кратности равно произведению степеней уравнений. Кратность решения есть, по определению, индекс пересечения гиперповерхностей (*) (см. Пересечения индекс) в соответствующей точке. Теорема носит имя Э. Безу [1], изучавшего системы алгебраич. уравнений высших степеней.

Лит. : [1] Bezout Е., Théorie générale des équations algébriques, P., 1779.

В. H. Ремесленников, В. E. Воскресенский.


Источники:

  1. Математическая Энциклопедия. Т. 1 (А - Г). Ред. коллегия: И. М. Виноградов (глав ред) [и др.] - М., «Советская Энциклопедия», 1977, 1152 стб. с илл.








© Злыгостев Алексей Сергеевич, статьи, подборка материалов, оформление, разработка ПО 2001-2019
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'Математическая библиотека'
Рейтинг@Mail.ru