Новости    Библиотека    Энциклопедия    Биографии    Карта сайта    Ссылки    О проекте




предыдущая главасодержаниеследующая глава

Новый член Института Франции

Известность и авторитет Пуанкаре в европейских научных кругах приводят к тому, что зарубежные математики, в немалом числе посещающие в это время Пария?, стремятся непременно войти с ним в контакт. Но сам Пуанкаре чувствует себя весьма неуютно в роли одной из столичных знаменитостей. Он не из тех людей, кто легко и непринужденно вступает в новые знакомства, и каждый новый визит вызывает у него чувство неловкости и скованности, с которыми он не в силах совладать. Именно таким увидел его немецкий математик Д. Гильберт, который сообщал в письме Ф. Клейну: "Он производит впечатление очень молодого и несколько нервного человека. Даже после нашего знакомства он не кажется очень дружелюбным: я думаю, что это объясняется его явной застенчивостью, которую мы не смогли преодолеть из-за отсутствия у нас лингвистических способностей".

С апреля месяца находясь в Париже, Гильберт прилагает немало усилий, чтобы поближе познакомиться с Пуанкаре. Это Феликс Клейн посоветовал своему молодому, но, несомненно, одаренному коллеге посетить французскую столицу, считая, что такая поездка окажет на него весьма благотворное и стимулирующее влияние, "особенно если удастся найти хороший подход к Пуанкаре". И вот в 1886 году Гильберт в компании с другим немецким математиком совершает научное паломничество, которое некогда осуществил сам Клейн. Французские математики встретили их с большой теплотой. Шарль Эрмит, демонстрируя свое редкостное доброжелательство, о котором они уже были наслышаны, не замедлил нанести им ответный визит. С Гильбертом он по собственной инициативе провел даже целое утро, свободное от лекционных занятий. Камилл Жордан устроил в честь зарубежных коллег обед, на котором присутствовали также Дарбу, Альфан и Маннгейм. В Сорбонне Гильберт посетил лекции Пикара, а также прослушал курс по теории потенциала и гидромеханике, читавшийся Пуанкаре. После этого он был представлен самому профессору, который был старше его лишь на шесть лет. Еще раз он встретился с ним, когда присутствовал на заседании Французского математического общества. Пуанкаре в этом году был избран его президентом. Но, видимо, сближение между ними шло не так быстро, как хотелось бы Гильберту, потому что в письме Клейну он жалуется, что Пуанкаре все еще не нанес им ответного визита.

Упреки в необщительности и недоверчивости не раз высказывались в адрес Пуанкаре. Действительно, он не очень легко сходился с малознакомыми ему людьми, решительно отклоняя какие бы то ни было попытки к душеизлиянию, претендующие на ответную откровенность с его стороны. Враг суетного пустословия и никчемной светской болтовни, Анри очень неохотно позволял посторонним угадывать скрытые движения своей души, оберегая свой внутренний мир от нескромных, назойливых взглядов. Это и создавало ему репутацию замкнутого человека. "...Относительно Пуанкаре я могу сказать все то же,- пишет Гильберт Клейну в другой раз.- Он кажется скрытным из-за застенчивости, которую можно будет преодолеть, если умело подойти к нему". Аппель, несомненно лучше знавший Пуанкаре, объясняет его сдержанность по отношению к недавним знакомым другой, более глубокой причиной: нежеланием в какой-то степени связать себя теми негласными обязательствами, которые поневоле налагает каждое новое тесное знакомство. Стремясь ограничить круг своих друзей и близких, который тем не менее был не так уж мал, он как бы инстинктивно оберегал свою внутреннюю свободу и духовную независимость, внешней скованностью окупал полную внутреннюю раскрепощенность. Только среди тех, с кем Анри долгое время поддерживал дружеские или приятельские отношения, он сразу становился самим собой, обретал свою привычную веселость и остроумие, свою непринужденность и уверенность в обращении. Друзья Пуанкаре единодушны в своих отзывах о нем: неизменно чистосердечен и прост, предан и доброжелателен.

Следует также сказать о замкнутом характере творчества Пуанкаре, который тоже не способствовал его сближению с молодым немецким коллегой. Гильберт, конечно, привык к тому свободному научному общению, которое принято у математиков за Рейном. Каждая математическая школа здесь являла некое подобие научной семьи, любой член которой открыто обсуждал в беседах, на семинарах или просто в кулуарах все перипетии своей текущей работы. Пуанкаре, наоборот, чуждался всяких шумных обсуждений и дискуссий, не признавал кружкового характера научной деятельности. Он предпочитал хранить про себя еще не вызревшие идеи, но не из-за эгоистической потребности в одиночестве. Просто он убежден, что словесный обмен мнениями вовсе не благоприятствует его свершениям. Творчество для него всегда было сугубо интимным процессом, противостоянием двоих - исследователя и упорно сопротивляющейся ему тайны. Феноменально развитая интуиция ведет Пуанкаре непосредственно к открытию, и между его разумом и истиной нет места каким бы то ни было посредникам или свидетелям. Безусловно, такое добровольное творческое отчуждение не соответствовало сложившемуся у Гильберта представлению о научных контактах между учеными.

Два этих года - 1886-й и 1887-й - внесли немалые изменения в жизнь Пуанкаре. С осени 86-го года он возглавил кафедру математической физики и теории вероятностей Парижского университета, став профессором Сорбонны одновременно с Э. Пикаром. А в январе следующего года его избрали членом Академии наук, входившей в Институт Франции.

В отличие от множества различных правительственных и частных учреждений, тоже носящих названия институтов, под наименованием "Институт Франции" понималось объединение из пяти самостоятельных академий, связанных одним уставом и общей целью. Как и Политехническая школа, организация эта была основана в годы Великой французской революции. В 1793 году Конституционным собранием были упразднены старые академии, образованные при королевском режиме, а взамен их два года спустя был учрежден Институт Франции с целью "собирать открытия, совершенствовать искусства и науки". Структура Института не один раз претерпевала изменения. Во времена Реставрации входящим в его состав академиям были присвоены старые, упраздненные названия, а в 1832 году число академий было увеличено с четырех до пяти. Таким образом, во второй половине XIX века Институт Франции имел следующий состав: Французская академия, главная цель которой заключалась в сохранении правильности и частоты французского языка; Академия наук; Академия надписей и изящной словесности, предназначенная для развития истории, археологии и языкознания; Академия изящных искусств, включавшая в себя живопись, скульптуру, архитектуру и музыку; Академия моральных и политических наук, к которой относили философию, политическую экономию, правоведение, законодательство и другие подобные науки.

Академия наук (старое название - Парижская академия) была разделена на одиннадцать секций: геометрия, механика, астрономия, география и навигация, общая физика - по разряду математических наук; химия, минералогия, ботаника, агрономия, анатомия и зоология, медицина и хирургия - по разряду физических наук. Каждый из двух разрядов имел своего непременного секретаря, а председателем избирались поочередно представители от обоих разрядов. Число действительных членов Академии наук равнялось 68. Помимо них, было 10 почетных и 8 иностранных членов, а также 100 корреспондентов. Популярный в те годы французский поэт Сюлли-Прюдом* посвятил деятельности членов этой академии следующие возвышенные строфы:

Одни из тех мужей обняли властным взором 
Громады дальних солнц в красе пустынной их. 
Пастер открыл миры мельчайшие, которым 
Нам меры не найти средь наших мер земных. 
Следя в природе цепь изменчивых явлений, 
Их ум определял законы изменений. 
Науки свет они старались засветить 
Над темною толпой в труде ее бессменном, 
Пытаясь вечное с текущим согласить.

* (Получил в 1901 году первую Нобелевскую премию по литературе.)

Выборы новых членов академии были знаменательным событием в академической жизни. Как только открывалось вакантное место, из числа академиков назначались , особые комиссии, которые должны были представить не менее трех кандидатов с обоснованием их заслуг. Фамилии претендентов на звание действительного члена публиковались за педелю до выборов. Целый мирок парижского общества напряженно следил за всеми перипетиями этой кампании. Результаты голосования печатались в протоколах академии. Избрание неудачной кандидатуры нередко вызывало в обществе и печати недовольные толки и нарекания. Кандидаты, не получившие одобрения, оставались в списках и на каждых последующих выборах продвигались в порядке установленной очереди к окончательному представлению.

Начало первой статьи Пуанкаре о фуксовых функциях (февраль 1881 г.)
Начало первой статьи Пуанкаре о фуксовых функциях (февраль 1881 г.)

Пуанкаре числился в списках по секции геометрии с 1881 года, когда после смерти Мишеля Шаля в члены академии был избран Камилл Жордан. Блестящие работы молодого математика по теории фуксовых функций и их многообразным приложениям привлекли к нему внимание академической комиссии. Он был представлен одновременно с Аппелем и Пикаром и оказался вместе с ними на пятом месте. В 1884 году в академию прошел Гастон Дарбу, а неразлучная троица передвинулась на четвертое место. На следующий год последовало избрание Эдмона Лагерра, и вместе с Маннгеймом они разделили уже третье место. В этом же году скончался Жан Буке, знакомство с которым оказало столь благотворное влияние на становление Пуанкаре как математика. (Знаменитый математический дуэт распался еще в 1880 году, когда умер Шарль Брио.) Теперь Анри с щемящим чувством теплой благодарности вспоминал, какую неизменную отзывчивость встречали у знаменитого метра его первые самостоятельные шаги на научном поприще. На освободившееся место в 1886 году был избран Жорж Альфан; Анпель, Пикар и Пуанкаре были уже на втором месте в списках. Следующие выборы могли оказаться для кого-то из них решающими. Друзья становились невольными конкурентами, но им не пришлось оспаривать друг у друга голоса академиков.

Очередные выборы состоялись в самом начале 1887 года. Причиной тому была преждевременная смерть Лагерра, не пробывшего в числе -академиков и двух лет. Можно усматривать глубокий смысл в том обстоятельстве, что Пуанкаре предоставлялась честь заступить место одного из своих бывших наставников в математике. Но еще более многозначительным выглядит тот факт, что в борьбе за высший ученый титул ему пришлось противостоять не кому иному, как Маннгейму. Судьба словно нарочно столкнула их в этом своеобразном поединке. Те из друзей Пуанкаре, кто был посвящен в историю его острого конфликта с полковником Маннгеймом в Политехнической школе, рассматривали наступившие выборы как продолжение той давней дуэли.

Тем сильнее волновало их ожидание скорой уже развязки, когда 24 января они сидели в зале заседаний академии среди публики, разместившейся на длинных скамьях вдоль стен. Лившийся сверху свет отбрасывал резкие тени на каменно-суровые лица великих французских писателей, весьма неодобрительно взиравших со своих пьедесталов на беспокойно шевелящуюся, поскрипывающую стульями толпу академиков. Тускло и буднично звучал голос непременного секретаря, зачитывавшего представления комиссий. Кандидатуру Пуанкаре сопровождала лаконичная, но весьма емкая характеристика, что его научные работы "выше обычной похвалы". Вот поднялся председатель и, близоруко вглядываясь в глубину зала, объявил, что по установленному порядку голосование будет проходить при закрытых дверях. Посетители со сдержанным гулом высыпали в длинный, просторный холл, украшенный статуей Шатобриана. Кому же отдадут предпочтение маститые академики: пожилому профессору Политехнической школы или молодому профессору Сорбонны, учителю или его бывшему ученику, сравнявшемуся с ним своей ученостью? А может быть, даже превзошедшему его? Через неделю любой желающий мог ознакомиться с результатами голосования, прочитав протоколы Академии наук. Тридцатью одним голосом против двадцати четырех действительным членом был избран Анри Пуанкаре. Ему было тогда тридцать два года.

предыдущая главасодержаниеследующая глава




ИНТЕРЕСНО:

Зачем математики ищут простые числа с миллионами знаков?

Задача построения новых оснований математики - унивалентные основания

Многомерный математический мир… в вашей голове

В школах Великобритании введут китайские учебники математики

Найдено самое длинное простое число Мерсенна, состоящее из 22 миллионов цифр

Как математик помог биологам совершить важное открытие

Математические модели помогут хирургам

Почему в математике чаще преуспевают юноши

Физики-практики откровенно не любят математику

В индийской рукописи нашли первое в истории упоминание ноля

Вавилонская глиняная табличка оказалась древнейшей «тригонометрической таблицей» в мире

Ученые рассказали о важной роли игр с пальцами в обучении детей математике
Пользовательского поиска

© Злыгостев Алексей Сергеевич, статьи, подборка материалов, оформление, разработка ПО 2001-2018
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'MathemLib.ru: Математическая библиотека'
Рейтинг@Mail.ru