Новости    Библиотека    Энциклопедия    Биографии    Карта сайта    Ссылки    О проекте




предыдущая главасодержаниеследующая глава

Предисловие

которое автор советует прочесть особенно внимательно

Светлой памяти Андрея Андреевича Маркова, создателя теории алгорифмов

Современное школьное математическое образование ориентировано главным образом на воспитание у учащихся функционального мышления, на умение обращаться с непрерывными математическими объектами. Намечающиеся изменения в школьных про- граммах по математике идут в том же направлении. Вместе с тем в последнее время стали интенсивно разрабатываться новые области применения математики: составление программ для вычислительных машин, некоторые аспекты кибернетики и исследования операций, математическая экономика, математическая лингвистика и т. д. Освоение этих областей науки наряду с совершенствованием классического аппарата требует развития комбинаторной техники, анализа дискретного и создания новых плодотворных абстракций. Перечисленные стороны математики должны освещаться и в научно-популярной литературе.

* * *

С опушки леса в чащу ведет множество тропинок. Они извилисты, они сходятся, расходятся вновь и пересекаются одна с другой. На прогулке можно только заметить обилие этих тропинок, походить по некоторым из них и проследить их направление в глубь леса. Для серьезного изучения леса нужно идти по тропинкам, пока они вообще различимы среди сухой хвои и кустарников черники. Для того чтобы использовать дары леса, приходится вовсе покидать хоженые тропинки и продираться сквозь сплетения колю- чих сучьев.

Настоящую брошюру можно рассматривать как описание одной из возможных прогулок по опушке современной математики. Изложение основных фактов, относящихся к признакам делимости, является в ней поводом затронуть некоторые довольно абстрактные вопросы дискретной математики. К числу таких вопросов относятся, прежде всего, утверждения элементарной теории чисел, группирующиеся вокруг основной теоремы арифметики и анализа канонического разложения натурального числа на простые множители. Далее, сама делимость чисел рассматривается как отношение на множестве целых чисел, т. е. как реализация довольно общего и абстрактного понятия. Наконец, признаки делимости трактуются здесь как алгорифмы, перерабатывающие каждое число в ответ, делится ли оно на данное число или не делится. Автор счел целесообразным среди признаков делимости особо выделить "признаки равноостаточности", перерабатывающие числа в остатки при их делении на данное число.

Для того чтобы оттенить разнообразные взаимо-связи между отдельными математическими фактами и возможности различных подходов к одному и тому же предмету, некоторые утверждения устанавливаются двумя различными путями.

* * *

Книжка рассчитана на школьников старших классов, интересующихся математикой и (если не считать нескольких упоминаний о формуле бинома) не пред-полагает никаких предварительных знаний, кроме умения производить несложные тождественные преобразования. Однако логическая структура материала довольно сложна, так что усвоение его во всех деталях может потребовать немало внимания и терпения.

Читателю можно порекомендовать следующий план изучения книжки.

При первом чтении можно ограничиться лишь основным текстом §§ 1-4 и не решать задач (за исключением задач №№ 31, 34, 36, 45, 47,49, 50). Это даст общее, описательное знакомство с предметом. Так как большинство неискушенных в математике людей убеждены в изначальной справедливости теоремы об однозначном разложении натурального числа на простые множители (считая, по-видимому, ее своего рода аксиомой), они могут понимать теоремы 9-13 как ее следствия.

При втором чтении нужно попытаться самостоятельно доказать все теоремы в том порядке, в каком они приведены. Чтобы читатель не поддавался слишком часто соблазну пользоваться готовыми доказательствами теорем, все эти доказательства отнесены в особый раздел. Исключение составляет доказательство теоремы 7, которое призвано служить камертоном, настраивающим читателя уже при первом чтении на должный уровень строгости.

При втором же чтении следует изучить § 5, а также решать задачи основного текста.

Наконец, при третьем чтении изучается мелкий шрифт и относящиеся к нему задачи.

Читателю, желающему углубить свои познания в области теории чисел, следует обратиться к классическому курсу акад. И. М. Виноградова "Основы теории чисел" ("Наука", 1972).

Изучение абстрактной теории отношений на множестве и дальнейших связанных с этим вопросов можно рекомендовать по книге А. Г. Куроша "Лекции по общей алгебре" ("Наука", 1973) или Г. Биркгофа "Теория структур" (ИЛ, 1951).

Наконец, более подробное и систематическое разъяснение понятия алгорифма содержится в брошюре Б. А. Трахтенброта "Алгоритмы и машинное решение задач" (Физматгиз, 1960), а строгое изложение теории алгорифмов можно найти в основополагающей монографии А. А. Маркова "Теория алгорифмов" (Труды матем. ин-та АН СССР им. Стеклова, т. 42, 1954).

Второе издание отличается от первого лишь отдельными редакционными улучшениями. За некоторые из них автор благодарен проф. Греллю (ГДР),

И. Н. Воробьев

предыдущая главасодержаниеследующая глава




ИНТЕРЕСНО:

Зачем математики ищут простые числа с миллионами знаков?

Задача построения новых оснований математики - унивалентные основания

Многомерный математический мир… в вашей голове

В школах Великобритании введут китайские учебники математики

Найдено самое длинное простое число Мерсенна, состоящее из 22 миллионов цифр

Как математик помог биологам совершить важное открытие

Математические модели помогут хирургам

Почему в математике чаще преуспевают юноши

Физики-практики откровенно не любят математику

В индийской рукописи нашли первое в истории упоминание ноля

Вавилонская глиняная табличка оказалась древнейшей «тригонометрической таблицей» в мире

Ученые рассказали о важной роли игр с пальцами в обучении детей математике
Пользовательского поиска

© Злыгостев Алексей Сергеевич, статьи, подборка материалов, оформление, разработка ПО 2001-2018
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'MathemLib.ru: Математическая библиотека'
Рейтинг@Mail.ru