НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    БИОГРАФИИ    КАРТА САЙТА    ССЫЛКИ    О ПРОЕКТЕ  

предыдущая главасодержаниеследующая глава

Беседа 3. Математика ум в порядок приводит

Слова "Математика ум в порядок приводит" принадлежат великому М. В. Ломоносову (1711 -1765). Что он имел в виду?

Дело в том, что наше мышление, перерабатывая ощущения, восприятия и представления о предметах и явлениях, как бы предвосхищает будущее, указывает нам, как поступить, что сделать в создавшейся ситуации. Поэтому от того, как "работает" наше мышление, зависит, поступим ли мы правильно и разумно или нет.

Человек рождается без умения мыслить, лишь с задатками к нему. Мыслить он научается постепенно в процессе жизненной практики, в общении со взрослыми и своими сверстниками, и особенно в обучении.

Одним из наиболее важных качеств мышления является его логичность т. е. способность делать из правильных посылок (суждений, утверждений)правильные выводы, находить правильные следствия из имеющихся фактов.

О человеке, у которого хорошо развито логическое мышление, говорят, что он основательно мыслит, дисциплинированно рассуждает. Такой человек, как правило, не допускает ошибок в своих рассуждениях и выводах. Хорошо развитое логическое мышление предостерегает человека от промахов и ошибок в практической деятельности. И вот оказывается, что это ценнейшее качество возникает и развивается главным образом в процессе изучения математики, ибо математика - это практическая логика, в ней каждое новое положение получается с помощью строго обоснованных рассуждений на основе ранее известных положений, т. е. строго доказывается. Ломоносов приведенными выше словами и имел все это в виду. На это же значение изучения математики указывал М. И. Калинин, призывая молодежь серьезно изучать математику: "Математика дисциплинирует ум, приучает к логическому мышлению. Недаром говорят, что математика - это гимнастика ума".

В связи с этим легко понять, почему так важно самому выводить формулы, доказывать тождества и теоремы. Ведь дело не в том, чтобы вы запомнили их на всю жизнь. Возможно, что они забудутся, но останется привычка рассуждать, сохранится умение объяснять, доказывать не только другим, но и самому себе какие-то истины, укрепится умение искать и находить рациональные пути решения возникающих в жизни проблем.

Вот эту культуру, дисциплину мысли, ее последовательность и доказательность, глубину и критичность, широту и оригинальность, а также необходимую пищу для мышления - систему знаний -вам дает школа, и в частности уроки математики. Эта сторона обучения математике особенно важна в наши дни, поскольку сейчас объем необходимых для человека знаний резко и быстро возрастает, поэтому необходимо каждому научиться самостоятельно пополнять свои знания. Овладеть этими умениями вам поможет добросовестное самостоятельное изучение математики.

Изучение математики формирует не только логическое мышление, но и много других качеств человека: сообразительность, настойчивость, аккуратность, критичность и т. д.

Очень важным среди них является пространственное воображение, т. е. умение представить в уме (вообразить) какие-то предметы, фигуры и при этом увидеть их не только неподвижными, но и в изменении, т. е. представить, что произойдет, если их как-то переместить, повернуть и т. д. При изучении математики, при решении геометрических задач вам все время приходится делать это, и тем самым у вас постепенно развивается эта важная способность. Почему важная? Поясним на примерах. Токарь, получив чертеж, должен до работы представить себе образ той детали, которую ему нужно выточить. А портниха должна обладать хорошими способностями к пространственному воображению, чтобы правильно раскроить материал. Эти же умения и способности позволяют шахматисту направлять фигуры на доске, а полководцу - войска на поле боя. Художник или писатель должен уметь детально вообразить ту ситуацию, которую он хочет описать. Высокий уровень ориентировки в пространстве является необходимым условием для спортсмена, позволяющим ему овладеть своим телом. А инженер? А оператор? А космонавт?... Нет такой области человеческой деятельности, где не нужны были бы хорошие умения и способности к пространственному воображению.

Эта же способность представить в уме - вообразить - важна и для планирования своей работы, своих действий с. тем, чтобы они были наиболее разумными, рациональными и безошибочными.

Изучение математики, решение математических задач развивают, помимо пространственного воображения, и способность догадываться, угадывать заранее результат, способность разумно искать правильный путь в самых запутанных условиях. Прочтя задачу и еще не производя никаких действий, вы уже научились сразу видеть, что тот или иной способ непригоден для ее решения, а вот какой-то другой способ может быть использован.

Как видим, математику следует глубоко и серьезно изучать не только потому, что она служит основой научного познания, не только потому, что без нее нельзя сделать ни шагу в жизни, в практической деятельности на любой работе, но и потому, что процесс ее изучения способствует развитию у человека важнейших качеств и способностей.

Поэтому хотя изучение математики и требует большого и упорного труда, но оно приносит так много пользы, столь много радостей познания и преодоления трудностей, что вы никогда не пожалеете о затраченных усилиях.

Задание

Попытайтесь самостоятельно ответить на вопросы и решить задачи, приведенные ниже. Если вы это не сможете сделать, то прочтите указания или ответы, которые приведены в конце книги, и попробуйте еще раз самостоятельно выполнить заданные упражнения. Если и после этого вы не сумеете это сделать, то постарайтесь разобраться коллективно или обратитесь за консультацией к учителю.

1.1. Почему стол на трех ножках на любом полу стоит не шатаясь, а стол на четырех ножках весьма часто шатается?

1.2. Портной, для того чтобы проверить, является ли лоскут материала квадратом, перегибал его по диагонали и смотрел, совпадают ли при этом вершины лоскута. Достаточна ли такая проверка? Почему?

1.3. Где, в каких науках используется декартова система координат?

1.4. Возьмите учебник физики. Проверьте, сумеете ли вы понять его содержание, если вдруг забудете всю математику.

1.5. Найдите в учебнике истории те страницы, на которых излагается изучаемая вами сейчас тема. Есть ли там математика?

1.6. Вспомните определение модуля числа. Пусть числу x: на координатной прямой соответствует точка X. Каков геометрический смысл выражения |х- 2|? Истолкуйте с этой точки зрения уравнение |х-2|+|х - 5|=а. Сообразите, при каких значениях а это уравнение не имеет решений. А при каких значениях а оно имеет бесконечное множество решений?

1.7. Докажите, что четных натуральных чисел столько же, сколько и нечетных.

1.8. Числа, кратные 10, очевидно, составляют лишь часть всех натуральных чисел. Между тем вам, должно быть, не трудно доказать, что их не меньше, а столько же, сколько всех натуральных чисел. В чем причина такого парадоксального (необычного) положения?

предыдущая главасодержаниеследующая глава











© MATHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'Математическая библиотека'
Рейтинг@Mail.ru