НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    БИОГРАФИИ    КАРТА САЙТА    ССЫЛКИ    О ПРОЕКТЕ  

предыдущая главасодержаниеследующая глава

Глава седьмая. Головоломки с отвлеченными числами

В этой главе мы рассмотрим головоломки с числами, для демонстрации которых не нужно никаких вспомогательных средств, за исключением карандаша и бумаги или, может быть, доски и куска мела. Эти головоломки можно разбить на три основные категории:

а) головоломки, основанные на быстром счете;

б) головоломки с предсказанием результатов действий;

в) головоломки с отгадыванием чисел. Существует обширная литература, посвященная первой из этих категорий. Однако быстрота вычислений в уме почти всегда демонстрируется как следствие совершенной техники счета, а не как фокус. Мы здесь лишь бегло коснемся четырех примеров быстрых вычислений, которые имеют большую популярность. Вот эти примеры:

1) нахождение дня недели, на который приходится какая-нибудь заданная дата;

2) ход шахматного коня;

3) построение волшебного квадрата по заданному числу (сумме);

4) быстрое извлечение кубического корня.

Быстрое извлечение кубического корня

Демонстрация фокуса с извлечением кубического корня начинается с того, что кого-нибудь из присутствующих просят взять любое число от 1 до 100, возвести его в куб и сообщить вслух результат. После этого показывающий мгновенно называет кубический корень из названного числа.

Для того чтобы показывать этот фокус, нужно сначала выучить кубы чисел от 1 до 10:

1-1 6- 216
2-8 7-343
3-27 8-512
4-64 9-729
5-125 10-1000

При изучении этой таблицы обнаруживается, что все цифры, на которые оканчиваются кубы, различны, причем во всех случаях, за исключением 2 и 3, а также 7 и 8, последняя цифра куба совпадает с числом, возводимым в куб. В исключительных же случаях последняя цифра куба равна разности между 10 и числом, возводимым в куб.

Покажем, как это обстоятельство используется для быстрого извлечения кубического корня. Пусть зритель, возводя некоторое число в куб, получил, например, 250047. Последняя цифра этого числа 7, из чего немедленно следует, что последней цифрой кубического корня должно быть 3. Первую цифру кубического корня находим следующим образом. Зачеркнем последние три цифры куба (независимо от количества его цифр) и рассмотрим цифры, стоящие впереди,- в нашем случае это 250. Число 250 располагается в таблице кубов между кубами шестерки и семерки. Меньшая из этих цифр - в нашем случае 6 - и будет первой цифрой кубического корня. Поэтому правильным ответом будет 63.

Чтобы лучше уяснить суть дела, приведем еще один пример. Пусть названо число 19683. Его последняя цифра 3 указывает, что последней цифрой кубического корня будет 7. Зачеркивая последние три цифры, получаем число 19, которое лежит между кубом двойки и кубом тройки. Меньшим из этих чисел будет 2, поэтому искомым кубическим корнем будет 27. Может показаться странным, но для извлечения целочисленных корней из степеней более высоких, чем третья, существуют более простые правила. Особенно легко находить корни пятой степени, потому что любое число и его пятая степень всегда оканчиваются одной и той же цифрой.

Сложение чисел Фибоначчи

Другой, несколько менее известный вычислительный фокус состоит в почти мгновенном сложении любых десяти последовательных чисел Фибоначчи (мы уже упоминали, что так называют ряд чисел, в котором каждое, начиная с третьего, представляет собой сумму двух предшествующих). Этот фокус демонстрируют так: показывающий просит кого-нибудь записать друг под другом два любых числа-, какие он пожелает. Допустим для примера, что были выбраны 8 и 5. Затем зритель должен сложить эти числа. Найденное таким образом третье число складывается со вторым (стоящим над ним), и получается четвертое число. Этот процесс повторяют до тех пор, пока в вертикальном столбце не окажется десять чисел;

8
5
13
18
31
49
80
129
209
338
---

Во время записывания чисел показывающий стоит, повернувшись спиной к зрителям. Когда все числа будут записаны, он поворачивается, проводит под колонкой цифр черту и, не задумываясь, подписывает сумму этих чисел. Чтобы получить эту сумму, ему просто нужно взять четвертое число снизу и умножить его на 11 - операция, которую легко можно проделать в уме*. В нашем случае четвертым числом будет 80, поэтому в ответе получится число 80, взятое 11 раз, т. е. 880.

* (Ряд, аналогичный ряду Фибоначчи, но начинающийся не с 1 и 1, а с любых чисел а и Ь, имеет вид а, b, а+b, а+2b, 2а+3b, 3а+5b, 5а+8b, 8а+13b, 13а+21b, 21a+34b,...

Его коэффициенты суть числа Фибоначчи, а сумма выписанных десяти членов равна, как легко сосчитать, 55а + 886 - на одно Ь меньше, чем второе из следующих за написанными чисел ряда)

Фокусы с предсказанием результатов действий над числами и фокусы с отгадыванием чисел легко обратимы; под этим подразумевается, что фокус с предсказанием числа можно показывать как фокус с отгадыванием этого числа, и наоборот. Допустим, например, что показывающий знает наперед результат вычисления, который, как предполагает зритель, ему не может быть известен. Тогда показывающий может оформить фокус в виде предсказания, записав известный ему результат будущего вычисления на листке бумаги; в этом случае фокус следует рассматривать как фокус с предсказанием. Но этот же фокус он может оформить как "чтение мыслей" зрителя - после того как зритель закончит свои вычисления, - в этом случае фокус нужно отнести к категории фокусов с отгадыванием числа. (Третьим вариантом может быть оформление фокуса в виде молниеносного вычисления.) Большинству фокусов, о которых мы собираемся сейчас рассказать, можно придать любую из только что упомянутых форм; однако дальше мы не будем тратить понапрасну слов, останавливая на этом внимание зрителя.

Предсказание числа

Возможно, самый старинный из фокусов с предсказанием числа состоит в том, что кого-нибудь просят задумать число, проделать над ним ряд операций и затем объявить результат; после этого оказывается, что названное число совпадает с записанным в предсказании. На тривиальном примере фокус выглядит так: зрителя просят задумать число, затем удвоить его, прибавить к произведению 8, разделить полученное число пополам и, наконец, вычесть задуманное число. В ответе всегда будет половина того числа, которое вы велели прибавить. В нашем случае прибавлялось 8, поэтому в ответе будет 4. Если бы зрителю предложили прибавить 10, в ответе оказалось бы 5.

Более интересный фокус этого типа начинают с того, что зрителя просят записать год своего рождения и прибавить к нему год какого-нибудь выдающегося события в его жизни. К полученной сумме он должен будет добавить еще свой возраст и, наконец, число лет, прошедших с года знаменательного события. Только немногие сообразят, что сумма этих четырех чисел всегда будет равняться удвоенному числу, обозначающему текущий год*. Таким образом, вы, конечно, можете предсказать эту сумму наперед.

* (Если N0 - год рождения, N1 - год выдающегося события, а N2 - текущий год, то мы получаем сразу N0 + N1 + (N2 - N0) + (N2 - N1) = 2N2, что и требуется)

Этот фокус можно показывать и следующим образом. Когда зритель запишет год своего рождения, вы сообщаете ему, что благодаря передаче мыслей на расстояние это число стало вам известно, после чего записываете на своем листке произвольное число, не показывая его зрителю. Об остальных трех числах вы говорите, что они стали вам известны тем же путем. В действительности же вы пишете какие угодно числа! Пока зритель складывает свои четыре числа, вы делаете вид, что заняты тем же, причем в качестве суммы записываете число, которое, как вы знаете, должно служить суммой. Теперь вы говорите зрителю, что не хотите, чтобы присутствующие знали его возраст (если зритель принадлежит к слабому полу, такой оборот будет даже более естественным), и поэтому советуете ему зачернить карандашом все четыре слагаемых, оставив только сумму. Сами вы делаете то же самое! Теперь суммы сопоставляются и оказывается, что они одинаковы. Такой метод демонстрации создает впечатление, что вы как-то узнали все четыре числа, записанных зрителем, хотя, конечно, вы не знали ни одного из них. Заметим, что этот метод оказывается эффектным при показе любого числового фокуса с заранее известным ответом. Когда вы просите зрителя добавить свой возраст, не забудьте уточнить, что его нужно брать на 31 декабря текущего года. В противном случае его возраст в целых годах может оказаться на единицу меньше, чем разность между текущим годом и годом рождения, а тогда и вся его сумма будет меньше вашей на единицу. Можно предложить еще, чтобы зритель включал дополнительно в общую сумму какую-нибудь постороннюю цифру, например число людей, присутствующих в комнате. Поскольку это число будет известно также и вам, для получения ответа нужно будет лишь добавить его к удвоенному текущему году. Таким образом, "пружинка" фокуса будет скрыта лучше. В случае, если вам придется повторять этот фокус, воспользуйтесь каким-нибудь другим числом (например, числом дней в текущем месяце), и ответы будут различными.

Отгадывание числа

Вот один из самых замечательных фокусов этого рода. Его выделяет из подобных фокусов та особенность, что ни разу за все время демонстрации как при выполнении операций над задуманным числом, так и после получения окончательного результата зритель ничего не сообщает показывающему. И все же оказывается, что, пользуясь искусно созданными лазейками, можно постепенно подобраться к задуманному зрителем числу.

Демонстрацию фокуса можно разделить на следующие шаги:

1) Вы просите кого-нибудь задумать число от 1 до 10 включительно.

2) Велите умножить его на 3.

3) Предлагаете разделить полученное число на 2.

4) Теперь вам необходимо узнать, получилась ли у зрителя в частном смешанная дробь или целое число. Чтобы добыть нужные сведения, попросите его еще раз умножить результат на 3. Если это будет сделано быстро, без видимого напряжения, есть все основания быть уверенным, что зрителю не пришлось иметь дело с дробями. Если же у него получалась дробь, он запнется и, возможно, будет несколько удивлен. Он может даже спросить, как ему быть с дробной частью. В любом случае, если вам покажется, что у зрителя в частном получилась дробь, скажите примерно следующее: "Между прочим, ваш последний результат содержит дробную часть, неправда ли? Мне так почему-то показалось. Пожалуйста, округлите ваше число в большую сторону. Ну, например, если у вас получилось 101/2, возмите вместо этого числа 11".

Теперь, если частное было дробным, запомните "ключевое число" 1. Если частное было целым, запоминать ничего не надо.

5) После того как в соответствии с предыдущей инструкцией было выполнено умножение на 3, велите зрителю снова разделить результат на 2.

6) Затем вам снова нужно знать, получилась ли в частном дробь или целое число. Вы говорите, например, следующее: "Теперь у вас в частном целое число, не так ли?". Если ответ будет утвердительным, произнесите: "Я так и думал" и переходите к дальнейшему. Если же вам ответят, что вы ошиблись, сделайте удивленное лицо и тут же скажите: "Ну, тогда освободитесь от дроби, взяв, как и в прошлый раз, ближайшее большее целое число".

В этом последнем случае запомните следующее ключевое число 2. Если же частное было целым, запоминать ничего не надо.

7) Предложите прибавить к результату 2.

8) Попросите вычесть 11. Конечно, два последних шага означают не что иное, как вычитание 9; однако эти ваши действия имеют целью замаскировать применение принципа девятки.

9) Если зритель объявит вам, что вычитание 11 произвести невозможно, потому что последнее полученное им число слишком мало, вы сразу же сможете назвать первоначально задуманное число. Так, например, если вам пришлось запоминать только ключевое число 1, была задумана единица; если вы запоминали ключевое число 2, была задумана двойка; если же приходилось запоминать оба ключевых числа - была задумана тройка (ее можно рассматривать как результат сложения обоих ключевых чисел); если же ничего не пришлось запоминать, была задумана четверка.

Допустим теперь, что вычитание числа 11 произвести можно, это будет означать, что задуманное число больше четырех.

Запомните ключевое число 4 и продолжайте следующим образом:

10) Попросите добавить к последнему результату 2.

11) Велите вычесть 11.

12) Если это сделать невозможно, тогда, сложив ключевые числа, вы получаете ответ. Если же зритель молча выполнил вычитание, сложите ключевые числа, прибавьте еще раз число 4 и вы получите задуманное число.

На первый взгляд этот фокус может показаться неоправданно сложным, но если вы его тщательно проработаете, вся процедура покажется вам совсем нетрудной. Конечно, вычитание девяток можно производить каким угодно способом. Например, вместо того чтобы прибавлять два и отнимать 11, можно предложить зрителю добавить 5 и вычесть 14 или прибавить 1 и вычесть 10. После нескольких демонстраций вы научитесь давать указания в такой форме, что у зрителя не будет возникать никаких подозрений, что своими ответами он дает нужную вам информацию о задуманном числе. После того как будет выполнена предложенная вами серия операций, кажущихся на первый взгляд бессмысленными и результаты которых к тому же не сообщаются, зритель с удивлением встретит объявление задуманного им числа *.

* (На стр. 123 приведена схема действий в этом фокусе. Индексы 1, 2, 3, 4 означают ключевые числа, которые запоминает показывающий. Из схемы видно, что задуманное число есть сумма получающихся к концу процесса ключевых чисел. Интересно, что количество чисел, которые можно задумать, можно увеличить. Так, для числа 11 схема остается без изменения, для 12 придется еще раз вычесть 9, что даст третью четверку, и т. д.)

Тайна девятки

Секрет только что описанного фокуса основан на свойствах числа 9. Существует множество других фокусов с числами, в которых используются некоторые любопытные особенности числа 9. Например, написав в обратном порядке любое трехзначное число (при условии, что первая и последняя его цифры различны) и вычтя из большего числа меньшее, мы всегда получим в середине девятку и сумму крайних цифр, тоже равную 9. Это означает, что вы сразу можете назвать результат вычитания, зная только его первую или только последнюю цифру. Если теперь написать разность в обратном порядке и эти два числа сложить, то получится 1089. Один из популярных фокусов с числами состоит в следующем. Число 1089 пишется заранее на листке бумаги, который затем переворачивается лицевой стороной вниз. После того как зритель окончит серию операций, описанных выше, и объявит свой окончательный результат - 1089, покажите записанное вами предсказание, держа при этом лист вверх ногами. Написанное на нем число будет прочитано как 6801, что, конечно, не будет правильным ответом. Сделайте удивленное лицо, а затем извинитесь, что взяли лист не так, как нужно. Поверните его на 180° и покажите верное число. Это небольшое попутное представление вносит развлекательный момент в демонстрацию фокуса.

Цифровые корни

Если сложить все цифры некоторого числа, затем все цифры только что найденной суммы и так продолжать достаточно далеко, то получится одна - единственная цифра, которая носит название цифрового корня первоначального числа. Быстрее всего можно получить цифровой корень при помощи так называемого "процесса отбрасывания девяток". Допустим, например, что мы хотим найти цифровой корень числа 87345691. Сначала сложим цифры 8 и 7, будет 15; затем тут же складываем 5 и 1, получаем 6. Этот же результат получится, если вычесть или "исключить" из 15 девятку. Теперь прибавим 6 к следующей цифре, т. е. к тройке, получится 9. Девять плюс 4 дает 13 - число, которое после исключения девятки опять сводится к числу 4. Так же мы поступаем, пока не дойдем до последней цифры. Цифра 7, полученная этим путем, будет цифровым корнем заданного числа 87345691.

Большое количество фокусов с числами основано на операции, которая приводит к числу, кажущемуся случайным, хотя в действительности имеющим своим цифровым корнем девятку. Если производилась именно такая операция, можно предложить зрителю обвести кружком любую цифру ответа (за исключением пуля), а остальные цифры назвать в любом порядке. После этого показывающий может объявить отмеченную цифру. Для этого ему нужно просто складывать называемые зрителем цифры, вычитая по ходу дела девятки; таким образом, при объявлении последней цифры он уже будет знать цифровой корень совокупности записанных им чисел. Если этим корнем окажется девятка, то была отмечена кружком эта же цифра. В остальных случаях, чтобы получить отмеченную цифру, нужно вычесть найденный цифровой корень из девятки. Вот некоторые из многих операций, которые приводят к числам, цифровой корень которых равен 9.

1. Напишите число (оно может быть сколь угодно большим) и переставьте его цифры в любом порядке; вычтите меньшее из этих чисел из большего.

2. Напишите какое-нибудь число, сложите все его цифры и вычтите полученную сумму из первоначального числа.

3. Напишите какое-нибудь число. Найдите сумму его цифр, умножьте ее на 9 и сложите результат с первоначальным числом.

4. Напишите какое-нибудь число, умножьте его на 9 или на число, кратное девяти. (Все числа, кратные девяти, имеют своим цифровым корнем девятку, и обратно, все числа, имеющие своим цифровым корнем девятку, кратны девяти.)

5. Напишите какое-нибудь число, сложите два числа, полученных из него путем любой перестановки Цифр, и возведите полученный результат в квадрат.

Если вы хотите еще более затемнить метод получения чисел, цифровой корень которых равен 9, вы можете перед существенным в этом методе действием Вводить произвольные числа и операции. Например, можно предложить зрителю записать количество мелочи в его кармане, умножить это число на число людей в комнате, прибавить к результату самый знаменательный год в его жизни и т. д. и, наконец, умножить результат на 9. Ясно, что только последнее действие имеет отношение к делу. Как только получено число, цифровой корень которого равен 9, вы можете предложить зрителю обвести какую-нибудь цифру результата кружком и показывать фокус, как это было описано выше.

Устойчивость цифрового корня

Возьмем какое-нибудь число, цифровой корень которого равен 9; образуем из него путем перестановки цифр второе число; переставляя снова цифры, получим третье число и будем так продолжать, пока не напишем столько чисел, сколько нам заблагорассудится. Сложив все эти числа, мы получим число, цифровой корень которого тоже будет равен девяти. Аналогично, если число, имеющее своим цифровым корнем 9, умножить на целое число, то цифровой корень произведения будет равен 9.

Используя это свойство устойчивости корня относительно сложения и умножения, можно придумать много фокусов. Допустим, например, что у вас нашлась денежная бумажка, серийный номер которой имеет своим цифровым корнем девятку. Приберегите ее, пока вам не представится случай показать фокус. Попросите кого-нибудь написать несколько цифр наугад, затем, как бы вспомнив что-то, выньте денежную бумажку из кармана и предложите зрителю вместо этого лучше переписать ее серийный номер - удобный способ, поясняете вы, выбора произвольных чисел. Далее зритель несколько раз переставляет цифры, получая при этом все новые числа, складывает их, не показывая своих вычислений, умножает ответ на любое пришедшее ему в голову целое число и, наконец, обводит кружочком одну из цифр результата. После того как будут названы в любом порядке остальные цифры, вы сможете назвать ему отмеченное число.

Можно демонстрировать этот фокус и иначе, на чав с чисел, входящих в дату демонстрации фокуса, т. е. порядкового номера месяца, дня месяца и года. При записи года у вас будет выбор: либо брать две последние цифры, либо все четыре. Примерно два дня из каждых девяти (принадлежащих записи года) оказываются пригодными для образования числа, числовой корень которого равен девяти. В один из таких дней вы можете показать этот фокус. Допустим, что ваша дата 29 марта 1958 года. Попросите кого-нибудь записать ее в виде 29.3.58. Так как эта группа чисел имеет своим цифровым корнем девятку, вы можете продолжать далее, как в только что описанном фокусе с денежной бумажкой, или выбрать другую процедуру, не меняющую цифровой корень.

Отгадывание возраста

Интересный способ узнавания возраста некоторого лица начинается с того, что его просят выполнить ряд каких-нибудь действий, приводящих к числу, имеющему своим цифровым корнем девятку. Затем предлагают прибавить к полученному числу свой возраст и сообщить вам сумму. По этой сумме легко узнать возраст зрителя. Сначала найдите цифровой корень суммы. Затем прибавляйте к нему девятки до тех пор, пока полученное число не покажется вам наиболее близким к возрасту вашего собеседника. Это число и будет искомым возрастом. Допустим, например, что вы попросили зрителя написать любое число и умножить его на 9, после чего у него получилось 2826. К этому числу он добавил 40, свой возраст, и сообщил вам сумму: 2866. Цифровой корень этого числа равен 4; добавляя к четверке девятки, получим числа 13, 22, 31, 40, 49 и т. д., поскольку с точностью до 9 лет оценить возраст нетрудно, вы устанавливаете, что правильным ответом будет 40.

Бухгалтеры-ревизоры часто проверяют правильность сложения и умножения при помощи цифровых корней. Например, сложение можно проконтролировать так: сначала найти цифровой корень всей совокупности цифр, входящих в слагаемые, а затем цифровой корень суммы. Если последняя была найдена правильно, корни должны совпасть. Это обстоятельство можно использовать для фокуса следующим образом.

Фокус со сложением

Попросите кого-нибудь составить задачу на сложение, выписывая несколько многозначных чисел в столбик, одно под другим. Напрактиковавшись, вы сможете исключать девятки почти с такой же скоростью, с какой выписываются цифры, так что к концу составления задачи цифровой корень совокупности всех чисел будет вам известен. Затем вы поворачиваетесь спиной и просите произвести сложение. Если теперь зритель обведет кружком какую-нибудь цифру результата (не нуль), а остальные назовет в произвольном порядке, вы сможете объявить отмеченную цифру. Для этого нужно будет найти цифровой корень группы цифр, названных зрителем, а затем вычесть его из цифрового корня, найденного вначале (вы должны были его запомнить). Если второй корень окажется больше первого, добавьте перед вычитанием к первому корню девятку. Если корни окажутся одинаковыми, отмеченная цифра была, конечно, девяткой.

Фокус с умножением

Подобный же фокус можно проделать, составив задачу на умножение; здесь мы будем опираться на тот факт, что цифровой корень произведения цифровых корней двух сомножителей равен цифровому корню произведения этих сомножителей. Итак, вы можете попросить кого-нибудь записать достаточно большое число, скажем, пяти- или шестизначное, и подписать под ним другое большое число. Следя за тем, как пишутся числа, вы определяете цифровые корни обоих сомножителей, перемножаете их и находите цифровой корень произведения.

Теперь вы поворачиваетесь спиной и предлагаете зрителю перемножить записанные им числа. Затем просите его обвести кружочком любую цифру результата (за исключением нуля) и назвать вслух остальные цифры в любом порядке. Как и в предыдущем фокусе, вы узнаете отмеченное число, вычитая цифровой корень совокупности названных зрителем цифр из цифрового корня, который вы должны были запомнить. Если второй корень будет больше первого, опять-таки перед вычитанием добавьте к первому из них девятку.

Тайна семерки

Все "таинственные" свойства девятки объясняются тем простым фактом, что эта цифра является последней в употребляемой нами десятичной системе счисления. В восьмеричной системе счисления такими же любопытными свойствами обладает семерка. Это утверждение легко проверить. Прежде всего составим список шестнадцати чисел, обозначая их в восьмеричной системе, и выпишем рядом их эквиваленты в десятичной системе.

Восмиричная система Девятичная система
1 1
2 2
3 3
4 4
5 5
6 6
7 7
10 8
11 9
12 10
13 11
14 12
15 13
16 14
17 15
20 16

Предположим, что мы взяли число 341 (запись в восьмеричной системе) и вычли из него число 143, полученное обращением порядка записи цифр. Сначала отнимем 3 из 11. В десятичной системе это означало бы то же, что отнять 3 из 9. В ответе получилось бы 6. Но цифра 6 в обеих системах счисления обозначает одно и то же число, поэтому разность между 11 (запись в восьмеричной системе) и 3 равна 6. Продолжая далее вычитание этим же путем, получим в ответе 176 (запись в восьмеричной системе):

  341 
 -
  143
  ---
  176

Вы замечаете, что цифрой, стоящей посередине, является семерка и что сумма крайних цифр тоже равна семи. Здесь происходит в точности то же самое, что и в варианте этого фокуса для десятичной системы, который мы описывали ранее, за исключением того, что ключевым числом является семерка, а не девятка.

Аналогичной проверке можно подвергнуть и все другие фокусы, основанные на свойствах девятки в десятичной системе. При этом для каждого из них найдется соответствующий фокус в восьмеричной системе, но роль "таинственного числа" будет принадлежать семерке. Выбирая соответствующую систему счислений, можно перенести особые свойства на любое желаемое число. Таким образом, становится очевидным, что эти свойства вытекают не из внутренних особенностей девятки, а только из того факта, что она является последней цифрой в нашей десятичной системе счисления.

Смешивание внутренних свойств числа с свойствами, вытекающими из его местоположения в данной системе счисления, является обычной ошибкой. Так, одно время думали, что по каким-то скрытым причинам среди цифр, изображающих бесконечную непериодическую десятичную дробь, обозначающую число я, семерка встречается в среднем реже других цифр. "Существует только одно число, настолько неравноправное среди других чисел, что невероятно, чтобы это могло быть случайностью, - писал доктор Огастес де Морган, - и это число есть таинственная семерка", Де Морган писал это, конечно, не всерьез; он хорошо знал, что цифры числа я в другой системе счисления будут совершенно отличными. В действительности даже в десятичной системе кажущаяся редкость появления семерки в числе я объясняется ошибкой, допущенной Уильямом Шенксом при вычислении этого числа. В 1873 году, после пятнадцати лет упорного труда, Шенкс вычислил число п с семьсот семью десятичными знаками (ошибка, допущенная им на 528-м знаке, свела на нет все последующие вычисления). В 1949 году вычислительная машина ЭНИАК, так сказать, в виде отдыха от более сложных заданий вычислила я более чем с 2000 верными десятичными знаками. При этом никаких "таинственных" отклонений в частоте появления какой-нибудь цифры обнаружено не было *.

* (Доказано, что частота появления любой цифры в десятичном разложении почти всех чисел одинакова и равна - 1/10 (а в разложении с базой m равна 1/m). Числа, для которых это не выполняется, как говорят, образуют множество меры нуль. т. е. могут быть заключены в систему числовых промежутков с какой угодно малой общей длиной. См. статью А. Я. Хинчина в 1-м выпуске "Успехов математических наук" за 1936 год)

Предсказание суммы

Можно ли знать наперед сумму, которая получится в результате сложения чисел, произвольно заданных присутствующими в аудитории? Фокусники придумали много остроумных решений этой задачи, которыми мы здесь не собираемся заниматься, так как они основаны на использовании подставных лиц, ловкости рук и других приемах нематематического характера.

Если же дать показывающему право называть слагаемые, чередуясь со зрителем, то он может получить желаемую сумму, не пользуясь при этом никакими нематематическими средствами. Самый простой и самый старый метод для этого следующий: допустим, что вы хотите получить в ответе 23 843. Отбросьте первую цифру, т. е. 2, а затем сложите ее с оставшимся числом, получится 3845. Это число вы напишите первым.

Теперь попросите зрителя подписать внизу любое четырехзначное число:

3845
1528

Под этими двумя числами вы пишете, как должно казаться зрителям - наугад, третье четырехзначное число. В действительности же под каждой цифрой, написанной зрителем, вы пишете ее дополнение до девятки:

3845
1528
8471

Далее пишет свое второе четырехзначное число зритель. Третье число пишете вы, причем, как и в предыдущем случае, составляете его из цифр, дополняющих до девяток цифры зрителя.


Сумма выписанных пяти чисел в точности равна 23843. В рассмотренном только что примере первая цифра предсказанного ответа была равной 2. Ей соответствовали две пары чисел, у которых сумма цифр, стоящих друг над другом, составляла 9, а всего слагаемых было пять. Если первой цифрой назначенной суммы будет цифра 3, то нужно брать три пары чисел с суммой стоящих друг над другом цифр, равной 9, и т. д. Во всех случаях первое число, которое нужно записать, вы получаете, отбрасывая первую цифру предсказанной суммы, а затем складывая ее с оставшимся числом. Фокус можно показывать с числами, составленными из любого числа цифр. Нужно только, чтобы во всех слагаемых оно было одинаковым.

Существует много вариантов этого фокуса. Например, первое число может написать зритель. Тогда ваше число, которое вы записываете под числом зрителя, нужно выбрать так, чтобы цифры, стоящие друг над другом, давали в сумме девятку. Далее зритель пишет третье число, вы пишете по тому же принципу четвертое число. Зритель пишет пятое и последнее число, после чего вы подводите черту и мгновенно подписываете сумму. Или, если вам это покажется более эффективным, пока зритель суммирует числа, поворачиваетесь спиной, а затем, не глядя на записанное, объявляете результат. Ответ получается, конечно, следующим образом: из последнего написанного числа нужно вычесть двойку и поставить ее перед полученным числом.

По желанию вы можете затянуть процесс суммирования. Например, можно вместе со зрителем записать шесть пар слагаемых, каждая из которых дает в сумме девятки. Последнее" число, которое запишет зритель, доведет количество слагаемых до 13; чтобы получить теперь ответ, нужно из тринадцатого числа вычесть 6, а затем написать 6 перед числом, полученным в остатке. Если вообразить себе, что сложение распространится, скажем, на 28 пар чисел, прежде чем будет написано последнее число, принцип фокуса остается неизменным: вычтите 28 из последнего числа и поставьте 28 перед полученным остатком.

Существует еще один вариант фокуса, когда пред сказание записывает зритель. Допустим, он выбрал число 538. Отбросьте пятерку и сложите ее с остатком, получится 43. Это число вы записываете первым.

Теперь поочередно со зрителем, пользуясь принципом девятки, вы записываете числа в столбик, пока под первым числом не окажется пять пар:


В ответе, конечно, получается число, предсказанное зрителем.

"Психологические моменты"

Еще одна категория фокусов с числами, совсем отличная от фокусов с предсказанием или отгадыванием числа, основана на том, что называют психологическими моментами. Эти фокусы не всегда получаются, но по каким-то неведомым причинам психологического характера шансы на успех при их демонстрации оказываются значительно большими, чем этого можно было ожидать. Вот простой пример. Если вы попросите назвать какое-нибудь число от 1 до 10, большинство людей назовет семерку, а если заданные границы будут 1 и 5, то - тройку.

Еще один любопытный психологический фактор, неизвестно кем впервые подмеченный, можно использовать в фокусе следующим образом. Напишите на клочке бумаги число 37 и отложите его в сторону. Затем, обращаясь к кому-нибудь из присутствующих, скажите: "Назовите, пожалуйста, двузначное число между 1 и 50, чтобы обе его цифры были нечетными и различными. Например, число 11 называть нельзя". Может показаться странным, но много шансов, что зритель назовет 37 (второе наиболее вероятное число 35). В сущности, его выбор ограничен восемью числами, причем упоминание числа 11 как бы привлекает его мышление к числам третьего десятка.

Если этот фокус у вас получится, попробуйте за ним другой. На этот раз попросите назвать двузначное число между 50 и 100, обе цифры которого должны быть четными и, как и в предыдущем случае, раз-I личными. В данном случае выбор зрителя ограничен семью числами, из которых как будто чаще всех называют 68. Если под руками имеются игральные карты, можно предсказать это число, положив на стол шестерку и восьмерку лицевой стороной вниз. Это повышает ваши шансы на успех, так как вы имеете выбор между двумя возможными ответами, т. е. между 68 и 86, в зависимости от того, какую карту вы откроете первой.

предыдущая главасодержаниеследующая глава











© MATHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'Математическая библиотека'
Рейтинг@Mail.ru