|
Шахматная доскаФокус с тремя шашкамиПока показывающий стоит, отвернувшись от доски, зритель берет три шашки и расставляет их на доске либо по диагонали, отмеченной на рис. 3 тремя буквами А, либо на противоположной диагонали, отмеченной тремя буквами В, и начинает передвигать их, произнося про себя буквы своего имени или фамилии (или и те и другие). При этом на каждую букву должен приходиться только один ход, который можно делать любой шашкой в любом направлении на одну клетку (шашки передвигаются только по белым полям). После того как вся фамилия будет произнесена, зритель может повторить всю процедуру еще несколько раз, опять-таки выбирая шашки наугад. После этого показывающий поворачивается к зрителям и, мельком взглянув на доску, объявляет, с какого угла зритель начинал передвигать шашки: с левого верхнего или правого нижнего. Рис. 3 Объяснение. Имя и фамилия, которые нужно побуквенно произносить про себя, должны обязательно состоять из четного числа букв. Если и имя и фамилия зрителя содержат такое число букв, можно брать как то, так и другое. Если четное число букв имеет только одно из таких слов, то предложите произносить именно это слово. Если, наконец, оба слова состоят из нечетного числа букв, то они должны произноситься друг за другом (так как сумма двух нечетных чисел четна). Повернувшись к зрителям и взглянув на доску, обратите внимание на вертикальные четные ряды, считая их занумерованными, как на рисунке. Если в этих рядах окажется всего четное число шашек (т. е. две или ни одной), то вначале шашки стояли в правом нижнем углу, в противном случае - в левом верхнем*. * (Общее число шашек, стоящих в четных вертикальных рядах, изменяется (в ту или иную сторону) ровно на I при каждом ходе. При четном числе ходов четность этого числа не изменится и останется такой же, как при первоначальном размещении шашек. Для размещения AAA это число нечетно, а для размещения ВВВ оно четно)
|
|
|||
© MATHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить ссылку на страницу источник: http://mathemlib.ru/ 'Математическая библиотека' |