|
КалендариСуществует много интересных фокусов с использованием табель-календаря. Вот некоторые наиболее интересные из них. Таинственные квадратыПоказывающий стоит, повернувшись спиной к зрителям, а один из них выбирает на помесячном табель-календаре любой месяц и отмечает на нем какой-нибудь квадрат, содержащий 9 чисел. Теперь достаточно зрителю назвать наименьшее из них, чтобы показывающий тут же, после быстрого подсчета, объявил сумму этих девяти чисел. Объяснение. Показывающему нужно прибавить к названному числу 8 и результат умножить на 9*. * (Если m - наименьшее число в указанном квадрате, то весь квадрат имеет вид
и сумма всех чисел квадрата равна 9т + 72 = 9(т + 8)) Фокус с отмеченными датамиФокус начинается так. Зрителю предлагают открыть помесячный табель-календарь на любом месяце и обвести кружком по своему выбору по одной дате в каждом из пяти столбиков. (В том случае, когда числа располагаются в шести столбиках, что бывает весьма редко, шестой столбик не принимают во внимание.) При этом показывающий стоит спиной к присутствующим. Все еще не оборачиваясь, он спрашивает: "Сколько у Вас обведено понедельников?", затем: "Сколько вторников?" и т. д., перебирая все дни недели. После седьмого и последнего вопроса показывающий объявляет сумму цифр, обведенных кружочками. Объяснение. Сумма чисел в строке, которая начинается первым числом месяца, всегда равна 75 (за исключением февраля не високосного года). Каждое отмеченное число в следующей строке увеличивает эту сумму на 1, в следующей за ней строке на 2 и т. д.; каждое отмеченное число в предыдущей строке уменьшает упомянутую сумму на 1, в предшествующей ей строке на 2 и т. д. Пусть, например, первое число месяца приходится на четверг и обведены один понедельник, один четверг и три субботы; показывающий производит в уме вычисление: 75+3-2-1-3=78 и объявляет полученный результат. Разумеется, показывающий должен знать заранее, на какой день приходится первое число выбранного зрителем месяца. ПредсказаниеНа каком-нибудь листке помесячного табель-календаря зритель заключает в квадрат шестнадцать чисел. Показывающий после беглого взгляда на обведенную фигуру записывает предсказание. Затем зритель выбирает в этом квадрате четыре числа, по видимости произвольных, но с соблюдением следующего правила. Первое из чисел выбирается (обводится кружочком) совершенно произвольна. Затем вычеркиваются все числа, находящиеся в той же строчке и в том же столбце, что и только что обведенное число. В качестве второго числа зритель может обвести кружочком любое число, оставшееся незачеркнутым. После этого он вычеркивает все числа, оказавшиеся в одной и той же строчке и в одном и том же столбце со вторым обведенным числом. Так же выбирается третье число, а соответствующие строчка и столбец вычеркиваются. В результате этих операций останется незачеркнутым одно-единственное число. Его зритель также обводит кружочком. Если теперь взять сумму четырех отмеченных нами чисел, то она окажется в точности равной предсказанному числу*. * (Сумма чисел, выбранных по одному из каждой строки и каждого столбца квадрата, равна сумме чисел на диагонали. Эта последняя есть сумма четырех членов арифметической прогрессии (с разностью 8) и равна, в силу известной формулы, удвоенной сумме первого и последнего членов) Объяснение. Показывающий замечает два числа, находящихся на двух диагонально противоположных углах квадрата. Какая из двух возможных пар это будет - безразлично. Чтобы получить ответ, нужно сложить эти два числа и найденную сумму удвоить. Более простой фокус, основанный на этом же принципе и не требующий табель-календаря, можно демонстрировать так. Начертите квадратную сетку из 16 клеток, подобную шахматной доске, и перенумеруйте клетки от 1 до 16 в естественном порядке. Если теперь предложить зрителю выбрать четыре числа при помощи того процесса, который описывался выше, и сложить их, то во всех случаях он будет получать одну и ту же сумму, а именно 34. Этот принцип можно демонстрировать на квадратах с любым числом клеток.
|
|
||||||||||
© MATHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить ссылку на страницу источник: http://mathemlib.ru/ 'Математическая библиотека' |