НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    БИОГРАФИИ    КАРТА САЙТА    ССЫЛКИ    О ПРОЕКТЕ  

предыдущая главасодержаниеследующая глава

Глава первая. Математические фокусы с картами

Игральные карты обладают некоторыми специфическими свойствами, которые можно использовать при составлении фокусов математического характера. Мы укажем пять таких свойств.

1. Карты можно рассматривать просто как одинаковые предметы, которые удобно считать; имеющиеся на них изображения не играют при этом никакой роли. С таким же успехом можно было бы пользоваться камешками, спичками или листочками бумаги.

2. Картам можно приписывать числовые значения от 1 до 13 в зависимости от того, что изображено на их лицевой стороне (при этом валет, дама и король принимаются соответственно за 11, 12 и 13) *.

* (Автор имеет в виду стандартную колоду из Б2 карт, по 13 карт каждой масти, и использует следующую нумерацию карт в пределах данной масти: 1 - туз, 2 - двойка, 3 - тройка, 4 - четверка, 5 - пятерка, 6 - шестерка, 7 - семерка, 8 - восьмерка, 9 - девятка, 10 - десятка, 11 - валет, 12 - дама, 13 - король)

3. Их можно делить на четыре масти или на черные и красные карты.

4. Каждая карта имеет лицевую и обратную (Стороны).

5.. Карты компактны и одинаковы по размеру. Это позволяет раскладывать их различным образом, группируя в ряды или составляя кучки, которые тут же можно легко расстроить, просто смешав карты.

Благодаря такому обилию возможностей карточные фокусы должны были появиться очень давно, и можно считать, что математические фокусы с картами, безусловно, столь же стары, как сама игра в карты.

По-видимому, наиболее раннее обсуждение карточных фокусов, выполненное математиком, встречается в развлекательной книжке Клода Гаспара Баше (Claud Gaspard Bachet "Problemes plaisants et delectables"), вышедшей во Франции в 1612 году. Впоследствии упоминания о карточных фокусах появлялись во многих книжках, посвященных математическим развлечениям.

Первым и, возможно, единственным философом, снизошедшим до рассмотрения карточных фокусов, был американец Чарлз Пейрс (Charles Peirce). В одной из своих статей он признается, что в 1860 году "состряпал" несколько "необыкновенных карточных фокусов, основанных, пользуясь" его терминологией, на "циклической арифметике". Два таких фокуса он подробно описывает под названием "первый курьез" и "второй курьез".

"Первый курьез" основан на теореме Ферма. Для одного лишь описания способа его демонстрации потребовалось 13 страниц и дополнительно 52 страницы были заняты объяснением его сущности. И хотя Пейрс сообщает о "неизменном интересе и изумлении публи- ки", вызываемом его фокусом, кульминационный эффект этого фокуса представляется настолько не соответствующим сложности приготовлений, что трудно поверить, что зрители не погружались в сон задолго до окончания его демонстрации.

Вот пример того, как в результате видоизменения способа демонстрации одного старого фокуса необычайно возросла его занимательность.

Шестнадцать карт раскладываются на столе лицевой стороной вверх в виде квадрата по четыре карты в ряд. Кому-нибудь предлагается задумать одну карту и сообщить показывающему, в каком вертикальном ряду она лежит. Затем карты собираются правой рукой по вертикальным рядам и последовательно складываются в левую руку. После этого карты снова раскладываются в виде квадрата последовательно по горизонталям; таким образом, карты, лежавшие при первоначальной раскладке в одном и том же вертикальном ряду, теперь оказываются в одном и том же горизонтальном ряду. Показывающему нужно запомнить, в каком из них лежит теперь задуманная карта. Далее зрителя просят еще раз указать, в каком вертикальном ряду он видит свою карту. Понятно, что после этого показывающий может сразу же указать задуманную карту, которая будет лежать на пересечении только что названного вертикального ряда и горизонтального ряда, в котором, как известно, она должна находиться. Успех этого фокуса, конечно, зависит от того, следит ли зритель за процедурой настолько внимательно, чтобы распознать суть дела.

Пять кучек карт

А теперь расскажем, как этот же самый принцип используется в другом случае.

Показывающий усаживается за стол вместе с четырьмя зрителями. Он сдает каждому (включая себя) по пяти карт, предлагает всем посмотреть их и одну задумать. Затем собирает карты, раскладывает их на столе в пять кучек и просит кого-нибудь указать ему одну из них. Далее берет эту кучку в руки, раскрывает карты веером, лицевой стороной к зрителям и спрашивает, видит ли кто-нибудь из них задуманную карту. Если да, то показывающий (так и не заглянув ни разу в карты) сразу же ее вытаскивает. Эта процедура повторяется с каждой из кучек, пока все задуманные карты не будут обнаружены. В некоторых кучках задуманных карт может вовсе не оказаться, в других же их может быть две и более, но в любом случае карты отгадываются показывающим безошибочно.

Объясняется этот фокус просто. Пятерки карт нужно собирать начиная от первого зрителя, сидящего слева от вас, и далее по часовой стрелке (карты держат лицевой стороной книзу); карты показывающего будут при этом последними и окажутся сверху пачки. Затем все карты раскладываются в кучки по пяти карт в каждой. Любая из кучек может быть открыта зрителям. Теперь, если, задуманную карту видит зритель номер два, то эта карта будет второй, считая сверху кучки. Если свою карту видит четвертый зритель, она будет четвертой в кучке. Иными словами, местоположение задуманной карты в кучке будет со-: ответствовать номеру зрителя, считая слева направо вокруг стола (т. е. по часовой стрелке). Это правило имеет силу для любой кучки.

После небольшого размышления становится ясным, что в рассматриваемом фокусе, точно так же как и в предыдущем, применяется один и тот же принцип с пересечением рядов. Однако в последнем варианте "пружинка" замаскирована гораздо лучше, благодаря чему получается значительно больший - внешний эффект.

На ближайших страницах мы остановимся на тех фокусах, которые могут показаться более оригинальными или занимательными; при этом мы постараемся проиллюстрировать как можно больше математических принципов, на которых они могут быть основаны,

предыдущая главасодержаниеследующая глава











© MATHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://mathemlib.ru/ 'Математическая библиотека'
Рейтинг@Mail.ru
Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь